Search results

1 – 10 of over 1000
Article
Publication date: 23 September 2013

Allen Y. Chang, Yu-Yung Li, Min-Hsiung Hung and Ting-Fan Yen

The purpose of this paper is to describe the development of a novel mobile monitoring and control (MC) framework with active-push and plug-and-play capabilities. This proposed…

Abstract

Purpose

The purpose of this paper is to describe the development of a novel mobile monitoring and control (MC) framework with active-push and plug-and-play capabilities. This proposed framework is particularly designed to addresses the shortcomings of the traditional factory MC systems in sharing information over the internet, protecting the system security, delivering warning messages, and deploying monitoring points.

Design/methodology/approach

By leveraging web service technology, mobile devices, and wireless communication, this paper describes the methodology and approach for designing a MC server, a wireless monitoring module (WMM), an intelligent v-Machine, two active-push mechanisms, a pocket PC application, and a smart phone application.

Findings

The designed WMM enables the monitoring points to be deployed in a mobile manner. The proposed mobile MC framework (MMCF) can timely detect abnormalities of appliances and equipment and turn off appliances in dangerous situations through WMM. It can also instantly deliver various warning contents to the mobile devices carried by the responsible persons. The v-Machine is built based on virtual metrology (VM) technology and can predict production precision of machined workpieces.

Research limitations/implications

With the successful design and testing of the novel MMCF, this framework can obviously be used for many more applications and developments.

Practical implications

The authors' implement a factory MC system based on the proposed framework and conduct various integration tests on two electric appliances and a practical CNC machine tool in a factory. Testing results shows that the factory MC system works smoothly according the design goals and can overcome the shortcomings of traditional factory MC systems. The MC system also presents good performances, instantly delivering warning contents with a size ranging from 1K bytes to 10M bytes to the users within few seconds.

Social implications

The proposed MMCF exploits various automation technologies to detect equipment's abnormalities, reduce the rate of product defects caused by human errors, reinforce security, prevent accidents, and ensure the safety of operations.

Originality/value

The proposed MMCF can effectively promote existing factory MC systems to achieve the merits of mobile MC, which is a unique contribution of this work, compared to previous studies. The results of this study can be applied to a variety of industrial automation applications, including factory automation and assembly automation.

Article
Publication date: 14 June 2013

Wen‐Tsai Sung and Chia‐Cheng Hsu

This study aims to analyze the inertial weight factor value in the (PSO) algorithm and propose non‐linear weights with decreasing strategy to implement the improved PSO (IPSO…

Abstract

Purpose

This study aims to analyze the inertial weight factor value in the (PSO) algorithm and propose non‐linear weights with decreasing strategy to implement the improved PSO (IPSO) algorithm. Using various types of sensors, combined with ZigBee wireless sensor networks and the TCP/IP network. The GPRS/SMS long‐range wireless network will sense the measured data analysis and evaluation to create more effective monitoring and observation in a regional environment to achieve an Internet of Things with automated information exchange between persons and things.

Design/methodology/approach

This study proposes a wireless sensor network system using ZigBee (PSoC‐1605A) chip, sensor and circuit boards to constitute the IOT system. The IOT system consists of a main coordinator (PSoC‐1605A), smart grid monitoring system, robotic arm detection warning system and temperature and humidity sensor network. The hardware components communicate with each other through wireless transmission. Each node collects data and sends messages to other objects in the network.

Findings

This study employed IPSO to perform information fusion in a multi‐sensor network. The paper shows that IPSO improved the measurement preciseness via weight factors estimated via experimental simulations. The experimental results show that the IPSO algorithm optimally integrates the weight factors, information source fusion reliability, information redundancy and hierarchical structure integration in uncertain fusion cases. The sensor data approximates the optimal way to extract useful information from each fusion data and successfully eliminates noise interference, producing excellent fusion results.

Practical implications

Robotic arm to tilt detection warning system: Several geographic areas are susceptible to severe tectonic plate movement, often generating earthquakes. Earthquakes cause great harm to public infrastructure, and a great threat to high‐tech, high‐precision machinery and production lines. To minimize the extent of earthquake disasters and allow managers to deal with power failures, vibration monitoring system construction can enhance manufacturing process quality and stability. Smart grid monitoring system: The greenhouse effect, global energy shortage and rising cost of traditional energy are related energy efficiency topics that have attracted much attention. The aim of this paper is that real‐time data rendering and analysis can be more effective in understanding electrical energy usage, resulting in a reduction in unnecessary consumption and waste. Temperature and humidity sensor network system: Environmental temperature and humidity monitoring and application of a wide range of precision industrial production lines, laboratories, antique works of art that have a higher standard of environmental temperature and humidity requirements. The environment has a considerable influence on biological lifeforms. The relative importance of environmental management and monitoring is acute.

Originality/value

This paper improves the fixed inertial weight of the original particle swarm optimization (PSO) algorithm. An illustration in the paper indicates that IPSO applies the Internet of Things (IOT) system in monitoring a system via adjusted weight factors better than other existing PSO methods in computing a precise convergence rate for excellent fusion results.

Details

Sensor Review, vol. 33 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 19 January 2015

Xinhua Yao, Sheng Li and Jianzhong Fu

The purpose of this paper is to study using thermoelectric module to harvest the waste heat from spindle units of machine tools and drive wireless sensors stable, thermal…

Abstract

Purpose

The purpose of this paper is to study using thermoelectric module to harvest the waste heat from spindle units of machine tools and drive wireless sensors stable, thermal structure design and optimization of the thermoelectric module.

Design/methodology/approach

In this paper, mesh-free-based method, rather than the standard finite element method, is used to analyze the thermal behavior of the thermoelectric modules with different structure. After that, experiments are done to obtain the real power output performance of those modules and evaluate the performance of driving a wireless sensor with those modules.

Findings

The paper provides that the difference in geometry structure can cause apparent change in surface temperature of heat-conducting plate, and the optimized thermoelectric module could increase the output voltage by about 7 per cent compared with the one without optimization.

Research limitations/implications

It is found that the structure changing of the thermoelectric module is not the only way to increase the harvesting power, so a high efficiency power manage system is needed to be studied in the future.

Practical implications

The paper includes implications for the development of self-powered wireless sensors in the spindle unit for machine tool monitoring.

Originality/value

The paper develops models of thermoelectric modules with different structures on a rotating spindle, and tests the performance of driving wireless sensors with those thermoelectric modules.

Details

Sensor Review, vol. 35 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 9 March 2010

Tansheng Li

The purpose of this paper is to present a wireless sensor network system which can monitor human physiological signals of heartbeat rate and body temperature.

Abstract

Purpose

The purpose of this paper is to present a wireless sensor network system which can monitor human physiological signals of heartbeat rate and body temperature.

Design/methodology/approach

When physiological activity occurs, signals are generated. By measuring these signals, human activity can be monitored. With the help of a new network module named Waseda Hibikino Module‐2, which can transmit not only data, but also based of physiological signals, a wireless sensor network is established.

Findings

While measuring physiological signals, a stable system is required. From human body to the terminal in a hospital, data must be sent completely, especially for example the heartbeat rate. And a stable transmission protocol must be applied during this process of wireless transmission.

Originality/value

This technology represents a new real‐time monitoring system of human physiological signals. With single data processing, it can prevent different kind of situations before a bad status like a heart attack occurs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2008

K. Arshak, A. Arshak, E. Jafer, D. Waldern and J. Harris

To develop a wireless sensor micro‐systems containing all the components of data acquisition system, such as sensors, signal‐conditioning circuits, analog‐digital converter…

2852

Abstract

Purpose

To develop a wireless sensor micro‐systems containing all the components of data acquisition system, such as sensors, signal‐conditioning circuits, analog‐digital converter, embedded microcontroller unit (MCU), and RF communication modules. This has now become the focus of attention in many biomedical applications.

Design/methodology/approach

The system prototype consists of miniature FSK transceiver integrated with MCU in one small package, chip antenna, and capacitive interface circuitry based on Delta‐sigma modulator. At the base station side, an FSK receiver/transmitter is connected to another MCU unit, which send the received data or received instructions from a PC through a graphical user interface GUI. Industrial, scientific and medical band RF (433 MHz) was used to achieve half duplex communication between the two sides. A digital filtering has been used in the capacitive interface to reduce noise effects forming capacitance to digital converter. All the modules of the mixed signal system are integrated in a printed circuit board of size 22.46 × 20.168 mm.

Findings

An innovation circuits and system techniques for building advanced smart medical devices have been discussed. Low‐power consumption and high reliability are among the main criteria that must be given priority when designing such wirelessly powered microsystems. Switched capacitors readout circuits have been found to be suitable for pressure sensing low‐power applications.

Research limitations/implications

The presented wireless prototype needs a second phase of development that will lead to a further reduction in both size and power consumption. Currently, the main limitation of the RF system is the number of working hours according to the selected battery.

Practical implications

The developed system was found to be useful in terms of measuring pressure and temperature in a system of either slow or fast physical change. It would be a good idea to explore the system performance in human or animal trials.

Originality/value

This paper fulfils useful information for capacitive interface circuitries and presents a new short‐range wireless system that has different design features.

Details

Microelectronics International, vol. 25 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 March 2013

Yu Tian, Yang Lv and Ling Tong

The purpose of this paper is to present one type of the architecture for wireless sensor network and to discuss in detail the hardware design of the sink node which can be…

Abstract

Purpose

The purpose of this paper is to present one type of the architecture for wireless sensor network and to discuss in detail the hardware design of the sink node which can be responsible for transmission data or instructions between sensor nodes and data. Finally, an experiment based on wireless sensor network has proved that the design of sink node is applicable and reliable in monitoring environmental elements such as temperature, humidity, etc.

Design/methodology/approach

A design for the sink node is presented which constants three parts: the power module, the storage/display module and the communication module. Zigbee, GPRS and Ethernet techniques are used on ARM7 microcontroller. The sink node is capable of bridging the user's terminal with sensor nodes for information transmission.

Findings

In this paper, a new method of the power management based on wireless sensor network is proposed to conserve energy. The antenna height is proven to be an important factor to the communicating among nodes. Finally, the paper proposes regular patterns of the deployment for sensor nodes based on the communication range and the sampling range.

Originality/value

The experiment for providing real‐time data on environment monitoring parameters indicates that the system is efficient. The authors believe that the idea and the design presented in the paper may help the research and application of wireless sensor network.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 April 2016

Heng Luo, Minjie Zhu, Sengang Ye, Hanping Hou, Yong Chen and Larissa Bulysheva

Monitoring the real-time temperature, humidity, and physical position status of goods is vital in the cold chain. Diverse logistics technologies and systems have been adopted in…

3289

Abstract

Purpose

Monitoring the real-time temperature, humidity, and physical position status of goods is vital in the cold chain. Diverse logistics technologies and systems have been adopted in the cold chain for monitoring perishable goods. However, these technologies and systems are independent from each other. Data and information in them are not integrated so that information control is not effective. The paper aims to discuss these issues.

Design/methodology/approach

By integrating Internet of Things and tracking technologies, this paper proposes an intelligent tracking system, which is designed to achieve effective and fast live monitoring of goods in the cold chain at the lowest cost and with the largest network capacity and simplest protocols.

Findings

Structure and information platform design mechanism are introduced. The key part of this system is a wireless sensor network built on Zigbee. Wireless sensors located in cold storages or refrigerated trucks are able to collect and transmit live data quickly and efficiently.

Originality/value

Users of the proposed system can easily monitor goods transported in cold chains. In addition, the system assigns specific servers to save historical data for inquiries.

Details

Internet Research, vol. 26 no. 2
Type: Research Article
ISSN: 1066-2243

Keywords

Article
Publication date: 8 June 2015

Nan Wang and Qingfeng Meng

The purpose of this paper is to provide a nondestructive monitoring method based on wireless sensor technology to measure the continuous circumferential film pressure on radial…

Abstract

Purpose

The purpose of this paper is to provide a nondestructive monitoring method based on wireless sensor technology to measure the continuous circumferential film pressure on radial cross-section of water-lubricated bearing, in addition, to study the influence factors to wireless communication.

Design/methodology/approach

The unique shaft and wireless equipments are designed, the pressure sensors are installed in right shoulder of shaft, the wireless transmitter is installed at the end of shaft and the sensors are connected with wireless transmitter by data cable. By this way, the film pressure can be obtained via wireless communication. The film pressure of eight grooved water-lubricated rubber bearings with concave staves is measured, the performance evaluation of wireless equipments is conducted and the influence factors to wireless communication is analyzed by Doppler frequency shift theory.

Findings

The rupturing and nonuniform water film is observed, the grooves decrease the film pressure of rubber bearing which is in mixed lubricating state. The main influence factor to wireless communication is shaft speed which has greater effect on packet loss rate than that on bit error rate.

Practical implications

By studying the actual continuous water film pressure, the bearing properties can be studied in-depth, and this has significant meaning to the design and application of bearing. Moreover, the study on influence factors to wireless communication can be used for references to other wireless monitoring on rotating machinery.

Originality/value

The continuous water film pressure can be monitored by this method, the lubricating state of bearing working surface cannot be damaged and the signal attenuation can be avoided. Therefore, the measuring accuracy is promoted and the measuring process also becomes convenient and high efficiency.

Details

Industrial Lubrication and Tribology, vol. 67 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 31 December 2006

Terry D. May, Shaun H. Dunning, George A. Dowding and Jason O. Hallstrom

Wireless sensor networks (WSNs) will profoundly influence the ubiquitous computing landscape. Their utility derives not from the computational capabilities of any single sensor…

Abstract

Wireless sensor networks (WSNs) will profoundly influence the ubiquitous computing landscape. Their utility derives not from the computational capabilities of any single sensor node, but from the emergent capabilities of many communicating sensor nodes. Consequently, the details of communication within and across single hop neighborhoods is a fundamental component of most WSN applications. But these details are often complex, and popular embedded languages for WSNs provide only low‐level communication primitives. We propose that the absence of suitable communication abstractions contributes to the difficulty of developing large‐scale WSN applications. To address this issue, we present the design and implementation of a Remote Procedure Call (RPC) abstraction for nesC and TinyOS, the emerging standard for developing WSN applications. We present the key language extensions, operating system services, and automation tools that enable the proposed abstraction. We illustrate these contributions in the context of a representative case study, and analyze the overhead introduced when using our approach. We use these results to draw conclusions regarding the suitably of our work to resource‐constrained sensor nodes.

Details

International Journal of Pervasive Computing and Communications, vol. 2 no. 4
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 16 March 2015

Congcong Zhou, Chunlong Tu, Jian Tian, Jingjie Feng, Yun Gao and Xuesong Ye

The purpose of this paper is to design a low-power human physiological parameters monitoring system which can monitor six vital parameters simultaneously based on wearable body…

Abstract

Purpose

The purpose of this paper is to design a low-power human physiological parameters monitoring system which can monitor six vital parameters simultaneously based on wearable body sensor network.

Design/methodology/approach

This paper presents a low-power multiple physiological parameters monitoring system (MPMS) which comprises four subsystems. These are: electrocardiogram (ECG)/respiration (RESP) parameters monitoring subsystem with embedded algorithms; blood oxygen (SpO2)/pulse rate (PR)/body temperature (BT)/blood pressure (BP) parameters monitoring subsystem with embedded algorithms; main control subsystem which is in charge of system-level power management, communication and interaction design; and upper computer software subsystem which manipulates system function and analyzes data.

Findings

Results have successfully demonstrated monitoring human ECG, RESP, PR, SpO2, BP and BT simultaneously using the MPMS device. In addition, the power reduction technique developed in this work at the physical/hardware level is effective. Reliability of algorithms developed for monitoring these parameters is assessed by Fluke Prosim8 Vital Signs Simulators (produced by Fluke Corp. USA).

Practical implications

The MPMS device provides long-term health monitoring without interference from normal personal activities, which potentially allows applications in real-time daily healthcare monitoring, chronic diseases monitoring, elderly monitoring, human emotions recognization and so on.

Originality/value

First, a power reduction technique at the physical/hardware level is designed to realize low power consumption. Second, the proposed MPMS device enables simultaneously monitoring six key parameters. Third, unlike most monitoring systems in bulk size, the proposed system is much smaller (118 × 58 × 18.5 mm3, 140 g total weight). In addition, a comfortable smart shirt is fabricated to accommodate the portable device, offering reliable measurements.

Details

Sensor Review, vol. 35 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of over 1000