Search results

1 – 10 of over 1000
Article
Publication date: 1 April 1986

VAUN THOMAS

Cemented carbides are probably the most successful composite materials ever produced. They are best known for their outstanding wear resistance but many of their unusual…

Abstract

Cemented carbides are probably the most successful composite materials ever produced. They are best known for their outstanding wear resistance but many of their unusual properties remain largely unexploited. The author, Research and Development manager of Sandvik Hard Materials Ltd, Coventry, outlines the distinctive characteristics of this range of materials and illustrates their advantages in a wide field of engineering applications.

Details

Industrial Lubrication and Tribology, vol. 38 no. 4
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 14 March 2016

BM Viswanatha, M Prasanna Kumar, S Basavarajappa and TS Kiran

This paper aims to investigate the microstructure, hardness and tribological properties of hypoeutectic (Al-7Si) matrix reinforced with fixed quantities of 3 Wt.% graphite (Gr…

Abstract

Purpose

This paper aims to investigate the microstructure, hardness and tribological properties of hypoeutectic (Al-7Si) matrix reinforced with fixed quantities of 3 Wt.% graphite (Gr) and x Wt.% SiCp (x = 3, 6 and 9) hybrid composites.

Design/methodology/approach

The composites were fabricated by stir cast technique. The microstructure, hardness and tribological measurements were carried out on the base alloy and composites. The tribological investigation was carried out on pin-on-disc wear testing machine under dry sliding condition.

Findings

The wear rate decreases with the increase of SiCp into A356-3Gr composites. The composite containing A356-9SiCp-3Gr had better hardness and good wear resistance compared to the base alloy. Scanning electron microscope (SEM) and electro dispersive spectrometry (EDS) images were used to study the reinforcement distribution and worn-out surface of the specimens.

Originality/value

The present paper brings out a clear picture of the various events that take place under the worn-out surfaces leading to the generation of mechanical mixed layer.

Details

Industrial Lubrication and Tribology, vol. 68 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 October 2018

Guotao Zhang, Yanguo Yin, Ting Xie, Dan Li, Ming Xu and Congmin Li

This paper aims to obtain high mechanical and good tribological properties of epoxy resin-based coatings under dry friction conditions.

Abstract

Purpose

This paper aims to obtain high mechanical and good tribological properties of epoxy resin-based coatings under dry friction conditions.

Design/methodology/approach

Bonded solid lubricant coatings containing Kevlar fibres were prepared by a spraying method. The friction and wear properties of the coatings were experimentally investigated with a face-to-face tribometre under dry friction conditions. Scanning electron microscopy, energy dispersive X-ray spectroscopy and 3D laser scanning technologies were used to characterise the tribological properties. The action mechanism of the Kevlar fibres on a solid lubricant transfer film was also analysed.

Findings

Adding Kevlar fibres can significantly improve the wear resistance of the coatings. When the Kevlar fibre content increases, the tribological properties of the coatings improve and then worsen. Superior properties are obtained with 0.03 g of Kevlar fibres. Appropriately increasing the load or speed is beneficial to the removal of the outer epoxy resin and the formation of a lubricant film. During friction, the solid lubricants wrapped in the epoxy resin accumulate on the surface to form a transfer film that shows a good self-lubricating performance. In the later friction stage, fatigue cracks occur on the solid lubricant film but cannot connect to one another because of the high wear resistance and the entanglement of the rod-like Kevlar fibres. Thus, no large-area film falls from the matrix, thereby ensuring the long-term functioning of solid lubricant coatings.

Originality/value

Epoxy resin-based solid lubricant coatings modified by Kevlar fibres were prepared, and their friction and wear properties were investigated. Their tribological mechanisms were also proposed. This work provided a basis for the analysis of the tribological properties and design of bonded solid lubricant coatings containing Kevlar fibres.

Details

Industrial Lubrication and Tribology, vol. 70 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 June 2015

Amit Sharma, Manish Garg and Satnam Singh

The purpose of this paper is to develop hybrid aluminum metal matrix composite by stir casting process, reinforced with graphite and hard boron carbide particles to enhance the…

Abstract

Purpose

The purpose of this paper is to develop hybrid aluminum metal matrix composite by stir casting process, reinforced with graphite and hard boron carbide particles to enhance the wear resistance. An attempt is made to optimize the wear (weight loss) and coefficient of friction (COF) by considering three factors, i.e. normal load, track diameter and sliding speed which were varied at three different levels.

Design/methodology/approach

The effect of graphite and boron carbide on microhardness was studied by adding them in varying percentages. After determining the best combination of hybrid reinforcements, optimization of wear (weight loss) and COF was carried out at various levels of considered factors. Taguchi design of experiments was used using the software “Minitab 16.1”. ANOVA was used to analyze the effect of various parameters on wear and COF. To validate the results, mathematical modeling was carried out in terms of regression equations and results obtained by regression equations.

Findings

The results revealed that the lower weight percentage of graphite (3 per cent) and boron carbide (1 per cent) significantly improved microhardness of developed composites. Results of ANOVA revealed that normal load was the main contributing factor for wear and COF. The results obtained by regression equations and confirmatory tests were within the results obtained by ANOVA.

Originality/value

To the best of the author’s knowledge, very less work has been reported on optimization of wear and COF using hybrid reinforcement particles of graphite and boron carbide.

Details

Industrial Lubrication and Tribology, vol. 67 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 24 March 2022

Asli Günay Bulutsuz

Zn has been attracting increasing attention with its biological compatibility property as a degradable implant material. Besides mechanical properties, especially for bone implant…

Abstract

Purpose

Zn has been attracting increasing attention with its biological compatibility property as a degradable implant material. Besides mechanical properties, especially for bone implant applications, wear resistance is a crucial mechanical property. The purpose of this study is to investigate HPTed Zn samples’ tribological behavior under dry and simulated body fluid (SBF) lubrication conditions.

Design/methodology/approach

Pure Zn powders were consolidated via the high-pressure torsion (HPT) method with 1, 5 and 10 rotations. Cast pure Zn samples were used as the control group. The wear behavior of pure Zn samples was investigated under dry and SBF lubrication conditions with a ball-on testing method. The wear tracks were observed with a mechanical profilometer and scanning electron microscope (SEM).

Findings

The application of HPT not only improved the mechanical strength and degradation performance but also improved wear resistance. However, tests with SBF resulted in higher wear rates. Besides, SBF significantly masked the positive effect of HPT on the coefficient of friction (COF). Although with SBF tests, 10 HPT rotation samples resulted in the lowest wear width and volume.

Originality/value

The main originality of this study is to reveal the HPT process and SBF effects on the tribological behavior of pure Zn to observe their potential usage for bone implant applications.

Details

Industrial Lubrication and Tribology, vol. 74 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 August 2010

M. Brochu, D.W. Heard, J. Milligan and S. Cadney

The purpose of this paper is to outline the feasibility of using the electrospark welding (ESW) process to free‐form metallic components with nanostructured or amorphous…

Abstract

Purpose

The purpose of this paper is to outline the feasibility of using the electrospark welding (ESW) process to free‐form metallic components with nanostructured or amorphous microstructures.

Design/methodology/approach

ESW was used to deposit amorphous and nanostructure coatings for high‐wear resistance applications. The ESW process was also used to freeform three‐dimensional objects via multiple deposition passes. The near‐net shape capability is interesting as it significantly reduces the post‐processing operations.

Findings

This paper demonstrates that it is possible and economically feasible to produce components possessing metastable structures, i.e. nano or amorphous, using the ESW process.

Practical implications

The ESW process possesses the ability to manufacture advanced materials and can pattern surfaces to provide appropriate functionality with respect to the service environment.

Originality/value

This paper represents a summary of the capabilities of ESW to fabricate advanced materials and is based on the achievements of our laboratory. In particular, results on ESW of amorphous materials and the ability to produce coatings with second phase particles refined to this extent have not been achieved using other manufacturing methods.

Details

Assembly Automation, vol. 30 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 6 August 2019

Onur Çomakli, Mustafa Yazici, Tuba Yetim, Fatih Yetim and Ayhan Celik

This paper aims to investigate the structural, tribological and electrochemical properties of Ag2O, ZnO, NiO coatings and Ag2O/ZnO/NiO nanocomposite films deposited on…

322

Abstract

Purpose

This paper aims to investigate the structural, tribological and electrochemical properties of Ag2O, ZnO, NiO coatings and Ag2O/ZnO/NiO nanocomposite films deposited on commercially pure titanium.

Design/methodology/approach

Ceramic thin films (Ag2O, ZnO, NiO coatings and Ag2O/ZnO/NiO nanocomposite film) were deposited on commercially pure titanium (CP-Ti) substrate. Surface characterization of the uncoated and coated samples was made by structural surveys (scanning electron microscopic examinations and X-ray diffraction analyses), hardness measurements, tribological and corrosion experiments.

Findings

Results were indicated that sol-gel coatings improved the wear and corrosion resistance of CP-Ti, and the best results were seen at the nanocomposite coating. It may be attributed to its small grain size, high surface hardness and high film thickness.

Originality/value

This study can be a practical reference and offers insight into the influence of nanocomposite ceramic films on the increase of hardness, tribological and corrosion performance. Also, the paper displayed a promising approach to produce Ag2O/ZnO/NiO nanocomposite coating on commercially pure titanium implants for biomedical applications.

Details

Industrial Lubrication and Tribology, vol. 71 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 May 2009

Saduman Sen and Ugur Sen

The purpose of this paper is to study the tribological behavior of hardened, boronized and boro‐chromized AISI 52100 steel balls against boro‐chromized AISI 1040 steel disk under…

1012

Abstract

Purpose

The purpose of this paper is to study the tribological behavior of hardened, boronized and boro‐chromized AISI 52100 steel balls against boro‐chromized AISI 1040 steel disk under 2, 5 and 10 N loads at 0.1 and 0.3 m/s sliding speeds.

Design/methodology/approach

Boronizing treatment was realized at 1,000°C for 2 h in a slurry salt bath consisting of borax, boric acid and ferro‐silicon. Some of the boronized steels were chromized at 1,000°C for 2 h by pack method in the powder mixture consisting of ferro‐chromium, ammonium chloride and alumina. Similarly, AISI 1040 steel disk was boronized at 900°C for 4 h in the same bath and then chromized by pack method. Friction and wear tests were carried out using a ball‐on‐disk machine.

Findings

The results showed that the specific wear rate of hardened and boronized AISI 52100 steel balls decreased with increasing load and decreasing sliding speed. Untreated AISI 52100 steel balls showed much greater specific wear rate than the boronized and boro‐chromized AISI 52100 steel balls. Boronized steel balls exhibited the highest wear resistance. The specific wear rates of hardened, boronized and borochromized steel balls were between 9.6422 × 10−5 and 1.6714 × 10−4, 4.4079 × 10−6 and 3.2829 × 10−5, and 1.0135 × 10−5 and 3.0559 × 10−5 mm3 N−1 m−1, respectively. The lowest coefficient of friction was recorded on a boro‐chromized steel disk, tested against boronized steel ball at 0.3 m/s sliding speed and under low‐load value.

Research limitations/implications

Tests have been made on the basis of atmospheric conditions. The study can be detailed using some lubricants on the wear test.

Practical implications

The research has shown that boronizing and boro‐chromizing treatments realized on steels have a good wear resistance in the open atmosphere. Boronizing treatment has been used for tribological applications for a long time. Boro‐chromizing treatment can be applied on steels, successfully.

Originality/value

Tribological properties of boro‐chromized steels are explained in the present study for the first time.

Details

Industrial Lubrication and Tribology, vol. 61 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 February 2020

Santosh Kumar, Manoj Kumar and Neeru Jindal

This paper aims to consolidate the results of various researchers focusing the different applications, so that this paper could become the torch bearer for the futuristic…

Abstract

Purpose

This paper aims to consolidate the results of various researchers focusing the different applications, so that this paper could become the torch bearer for the futuristic researchers working in the domain of cold gas dynamics spray coating.

Design/methodology/approach

A study on the cold spray coating is presented by summarizing the data present in literature. Important factors such as coating temperature, pressure, coating thickness, particle size, which affect the erosion-corrosion (E-C) resistance, physical and mechanical properties of boiler steel are stated. This paper also addresses the use of cold spray coating and compares it with other different thermal spray processes.

Findings

From the literature review, it was noticed that cold spray technology is best as compare to other thermal spray processes to reduce porosity, increase hardness, adhesion strength and retention in properties of feedstock powders.

Originality/value

Cold spray coating technology has a great potential in almost every field especially in restoration of surfaces, generation of complex surface, biomedical application, resist hot corrosion, wear, oxidation and erosion corrosion.

Details

World Journal of Engineering, vol. 17 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 13 November 2017

Dawit Zenebe Segu and Pyung Hwang

This study aims to compare the friction and wear behaviors of Fe68.3C6.9Si2.5 B6.7P8.8Cr2.2Al2.1Mo2.5 bulk metallic glass (BMG) under sliding using dry, deionized water-lubricated…

Abstract

Purpose

This study aims to compare the friction and wear behaviors of Fe68.3C6.9Si2.5 B6.7P8.8Cr2.2Al2.1Mo2.5 bulk metallic glass (BMG) under sliding using dry, deionized water-lubricated and oil-lubricated conditions. The comparison was performed using a unidirectional ball-on-flat tribometer under different applied loads, and the results were compared to the properties of a conventional material, SUJ2. Fe-based BMG materials have recently been attracting a great deal of attention for prospective engineering applications.

Design/methodology/approach

As a part of the development of Fe-based BMGs that can be cost-effectively produced in large quantities, an Fe-based BMG Fe68.8C7.0Si3.5B5.0P9.6 Cr2.1Mo2.0Al2.0 with high glass forming ability was fabricated. In the present study, the friction and wear properties of Fe-based BMG has been comparatively evaluated under dry sliding, deionized water- and oil-lubricated conditions using a unidirectional ball-on-flat tribometer under different applied loads, and the results were compared to the properties of conventional material SUJ2.

Findings

The results show that the Fe-based BMG had better friction performance than the conventional material. Both the friction coefficient and wear mass loss increased with increasing load. The sliding wear mechanism of the BMG changed with the sliding conditions. Under dry sliding conditions, the wear scar of the Fe-based BMG was characterized by abrasive wear, plastic deformation, micro-cracks and peeling-off wear. Under water- and oil-lubricated conditions, the wear scar was mainly characterized by abrasive wear and micro-cutting.

Originality/value

In this investigation, the authors developed a new BMG alloy Fe68.8C7.0Si3.5B5.0P9.6Cr2.1Mo2.0Al2.0 to improve the friction and wear performance under dry sliding, deionized water- and oil- lubricated conditions.

Details

Industrial Lubrication and Tribology, vol. 69 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 1000