Search results

1 – 10 of 56
Article
Publication date: 7 September 2015

Igor V Miroshnichenko and M A Sheremet

The purpose of this paper is to present transient turbulent natural convection with surface thermal radiation in a square differentially heated enclosure using non-primitive…

Abstract

Purpose

The purpose of this paper is to present transient turbulent natural convection with surface thermal radiation in a square differentially heated enclosure using non-primitive variables like stream function and vorticity.

Design/methodology/approach

The governing equations formulated in dimensionless variables “stream function, vorticity and temperature,” within the Boussinesq approach taking into account the standard two equation k-ε turbulence model with physical boundary conditions have been solved using an iterative implicit finite-difference method.

Findings

It has been found that using of the presented algebraic transformation of the mesh allows to effectively conduct numerical analysis of turbulent natural convection with thermal surface radiation. It has been shown that the average convective Nusselt number increases with the Rayleigh number and decreases with the surface emissivity, while the average radiative Nusselt number is an increasing function of these key parameters. It has been shown that a presence of surface thermal radiation effect leads to an expansion of the eddy viscosity zones close to the walls.

Originality/value

It should be noted that for the first time in this paper we used stream function and vorticity variables with very effective algebraic transformation of the mesh in order to create a non-uniform mesh for an analysis of turbulent flow. Such method allows to reduce the computational time essentially in comparison with using of the primitive variables. The considered method has been successfully validated on the basis of the experimental and numerical data of other authors in case of turbulent natural convection without thermal radiation. The used numerical method would benefit scientists and engineers to become familiar with the analysis of turbulent convective heat and mass transfer, and the way to predict the properties of the turbulent flow in advanced nuclear systems, in industrial sectors including transportation, power generation, chemical sectors, ventilation, air-conditioning, etc.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 January 2016

Abderrahim Bourouis, Abdeslam Omara and Said Abboudi

The purpose of this paper is to provide a numerical study of conjugate heat transfer by mixed convection and conduction in a lid-driven enclosure with thick vertical porous layer…

Abstract

Purpose

The purpose of this paper is to provide a numerical study of conjugate heat transfer by mixed convection and conduction in a lid-driven enclosure with thick vertical porous layer. The effect of the relevant parameters: Richardson number (Ri=0.1, 1, 10) and thermal conductivity ratio (Rk=0.1, 1, 10, 100) are investigated.

Design/methodology/approach

The studied system is a two dimensional lid-driven enclosure with thick vertical porous layer. The left vertical wall of the enclosure is allowed to move in its own plane at a constant velocity. The enclosure is heated from the right vertical wall isothermally. The left and the right vertical walls are isothermal but temperature of the outside of the right vertical wall is higher than that of the left vertical wall. Horizontal walls are insulated. The governing equations are solved by finite volume method and the SIMPLE algorithm.

Findings

From the finding results, it is observed that: for the two studied cases, heat transfer rate along the hot wall is a decreasing function of thermal conductivity ratio irrespective of Richardson numbers contrary to the heat transfer rate along the fluid-porous layer interface which is an increasing function of thermal conductivity ratio. At forced convection dominant regime, the difference between heat transfer rate for upward and downward moving wall is insensitive to the thermal conductivity ratio. For downward moving wall, average Nusselt number is higher than that of upward moving wall.

Practical implications

Some applications: building applications, furnace design, nuclear reactors, air solar collectors.

Originality/value

From the bibliographic work and the authors’ knowledge, the conjugate mixed convection in lid-driven partially porous enclosures has not yet been investigated which motivates the present work that represent a continuation of the preceding investigations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 1995

Colomba Di Blasi

A two‐dimensional mathematical model of flame spread andsolid burning is presented. For the gas phase, it consists ofvariable density, fully elliptic Navier‐Stokes momentum…

Abstract

A two‐dimensional mathematical model of flame spread and solid burning is presented. For the gas phase, it consists of variable density, fully elliptic Navier‐Stokes momentum, energy and chemical species mass equations. Combustion processes are treated according to a one‐step, finite‐rate, reaction. The solid phase model describes a porous cellulosic fuel for a range of thicknesses from the thermally thin to the thermally thick limit. Conductive and convective heat transfer takes place as the solid degrades, by two first order Arrhenius reactions, to volatiles and chars. Variations of solid phase densities account for fuel burn‐out. Effects of gas phase and surface radiation are also included. A steady formulation of gas phase equations with respect to the unsteady solid phase mathematical model is proposed, gas phase characteristic times being much shorter than those of the solid phase. The non‐constant density Navier‐Stokes equations are formulated in terms of vorticity and stream function, avoiding the pressure‐velocity coupling and, at the same time, the adoption of a sample‐fixed coordinate system allows unsteady flame spread processes to be simulated. The solution is computed numerically by means of an iterative, operator‐splitting method based on implicit finite‐difference approximations. Numerical simulations of the dynamics of flame spread over cellulosic solids are presented and extinction limits as a consequence of reduced rates of fuel generation are determined.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 5 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 January 1996

I. Raspo, J. Ouazzani and R. Peyret

This paper presents a spectral multidomain method for solving theNavier‐Stokes equations in the vorticity‐stream function formulation. Thealgorithm is based on an extensive use of…

Abstract

This paper presents a spectral multidomain method for solving the Navier‐Stokes equations in the vorticity‐stream function formulation. The algorithm is based on an extensive use of the influence matrix technique and so leads to a direct method without any iterative process. Numerical results concerning the Czochralski melt configuration are reported and compared with spectral monodomain solutions to show the advantage of the domain decomposition for such a problem which solution presents a singular behaviour.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 6 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 June 2016

Chahinez Ghernoug, Mahfoud Djezzar, Hassane Naji and Abdelkarim Bouras

The purpose of this paper is to numerically study the double-diffusive natural convection within an eccentric horizontal cylindrical annulus filled with a Newtonian fluid. The…

220

Abstract

Purpose

The purpose of this paper is to numerically study the double-diffusive natural convection within an eccentric horizontal cylindrical annulus filled with a Newtonian fluid. The annulus walls are maintained at uniform temperatures and concentrations so as to induce aiding thermal and mass buoyancy forces within the fluid. For that, this simulation span a moderate range of thermal Rayleigh number (100RaT100,000), Lewis (0.1Le10), buoyancy ratio (0N5) and Prandtl number (Pr=0.71) to examine their effects on flow motion and heat and mass transfers.

Design/methodology/approach

A finite volume method in conjunction with the successive under-relaxation algorithm has been developed to solve the bipolar equations. These are written in dimensionless form in terms of vorticity, stream function, temperature and concentration. Beforehand, the implemented computer code has been validated through already published findings in the literature. The isotherms, streamlines and iso-concentrations are exhibited for various values of Rayleigh and Lewis numbers, and buoyancy ratio. In addition, heat and mass transfer rates in the annulus are translated in terms of Nusslet and Sherwood numbers along the enclosure’s sides.

Findings

It is observed that, for the range of parameters considered here, the results show that the average Sherwood number increases with, while the average Nusselt number slightly dips as the Lewis number increases. It is also found that, under the convective mode, the local Nusselt number (or Sherwood) increases with the buoyancy ratio. Likewise, according to Lewis number’s value, the flow pattern is either symmetric and stable or asymmetric and random. Besides that, the heat transfer is transiting from a conductive mode to a convective mode with increasing the thermal Rayleigh number, and the flow structure and the rates of heat and mass transfer are significantly influenced by this parameter.

Research limitations/implications

The range of the Rayleigh number considered here covers only the laminar case, with some constant parameters, namely the Prandtl number (Pr = 0.71), and the tilt angle (α=90°). The analysis here is only valid for steady, two-dimensional, laminar and aiding flow within an eccentric horizontal cylindrical annulus. This motivates further investigations involving other relevant parameters as N (opposite flows), Ra, Pr, Le, the eccentricity, the tilt angle, etc.

Practical implications

An original framework for handling the double-diffusive natural convection within annuli is available, based on the bipolar equations. In addition, the achievement of this work could help researchers design thermal systems supported by annulus passages. Applications of the results can be of value in various arrangements such as storage of liquefied gases, electronic cable cooling systems, nuclear reactors, underground disposal of nuclear wastes, manifolds of solar energy collectors, etc.

Originality/value

Given the geometry concerned, the bipolar coordinates have been used to set the inner and outer walls boundary conditions properly without interpolation. In addition, since studies on double-diffusive natural convection in annuli are lacking, the obtained results may be of interest to handle other configurations (e.g., elliptical-shaped speakers) with other boundary conditions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 August 2017

M. Sheikholeslami

The effect of a magnetic field on nanofluid natural convection in a porous annulus is simulated. Control volume-based finite element method (CVFEM) is applied to find the…

Abstract

Purpose

The effect of a magnetic field on nanofluid natural convection in a porous annulus is simulated. Control volume-based finite element method (CVFEM) is applied to find the influence of tilted angle and Darcy, Rayleigh and Hartmann numbers on nanofluid hydrothermal behavior. Vorticity stream function formulation is taken into account. Also, Brownian motion effect on nanofluid thermal conductivity is considered. Results reveal that Hartmann number and tilted angle make changes in nanofluid flow style. Nusselt number enhances with augment of Darcy number and buoyancy forces but reduces with rise of tilted angle and Hartmann number.

Design/methodology/approach

The influence of adding CuO nanoparticles in water on the velocity and temperature distribution in an inclined half-annulus was studied considering constant heat flux. CVFEM is applied to the simulation procedure.

Findings

Influences of CuO volume fraction, inclination angle and Rayleigh number on hydrothermal manners are presented.

Originality/value

Results indicate that inclination angle makes changes in flow style. The temperature gradient enhances with rise of buoyancy forces, whereas it reduces with augment of inclination angle.

Details

Engineering Computations, vol. 34 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 January 2018

Kalidasan K., R. Velkennedy, Jan Taler, Dawid Taler, Pawel Oclon and Rajesh Kanna P.

This study aims to perform a numerical study of air convection in a rectangular enclosure with two isothermal blocks and oscillating bottom wall temperature under laminar flow…

Abstract

Purpose

This study aims to perform a numerical study of air convection in a rectangular enclosure with two isothermal blocks and oscillating bottom wall temperature under laminar flow conditions. The geometry of the enclosure contains two isothermal blocks placed equidistant along the streamwise direction. The top wall is assumed to be cold (low temperature). The bottom wall temperature is either kept as constant or sinusoidally varied with time. The vertical walls are considered as adiabatic. The flow is diagonally upwards and assisted by the buoyancy force. The inlet is positioned at the bottom of the left wall, and the outlet is placed at the top of the right wall. The parameters considered in this paper are Rayleigh number (104-106), Prantdl number (0.71), amplitude of temperature oscillation (0-0.5) and the period (0.2). The effects of these parameters on heat transfer and fluid flow inside the open cavity are studied. The periodic results of fluid flow are illustrated with streamlines and the heat transfer is represented by isotherms and time-averaged Nusselt number. By virtue of increasing buoyancy, the heat transfer accelerates with an increase in the Rayleigh number. Also, the heat transfer is intensive with an increase in the bottom wall temperature.

Design/methodology/approach

The momentum and energy equations are solved simultaneously. The energy equation (3) is initially solved using the alternating direction implicit (ADI) method. The results of the energy equation are updated into the vorticity equation. The unsteady vorticity transport equation is also solved using the ADI method. Dimensionless time step equal to 0.01 is used for high Ra (105 and 106) and 0.001 is used for low Ra (104). Convergence criteria of 10−5 is used during the vorticity, stream function and temperature calculations, as the sum of error should be very small.

Findings

Numerical study of air convection in a rectangular enclosure with two isothermal blocks and oscillating bottom wall temperature is performed under laminar flow condition. The effect of the isothermal blocks on the heat transfer is analyzed for different Rayleigh numbers and the following conclusions are arrived. The hydrodynamic blockage effect is subdued by the isothermal heating of square blocks. Based on the streamline diagrams, it is found that the formation of vortices is greatly influenced by the Rayleigh number when all the walls are exposed to a constant wall temperature. The influence of amplitude on the heat transfer is remarkable on the wall exposed to oscillating temperature and is subtle on the opposite static cold wall. The heat transfer increases with an increase in the Rayleigh number and temperature.

Research limitations/implications

Flow is assumed to be two-dimensional and laminar subject to oscillatory boundary condition. The present investigation aims to study natural convection inside the cavity filled with air whose bottom wall is subject to time-variant temperature. The buoyancy is further intensified through two isothermal square blocks placed equidistant along the streamwise direction at mid-height.

Originality/value

The authors have developed a CFD solver to simulate the situation. Effect of Rayleigh number subject to oscillatory thermal boundary condition is simulated. Streamline contour and isotherm contour are presented. Local and average Nusselt numbers are presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 July 1995

Shih‐Wen Hsiao

The problems of transient natural convection from a corrugated plateembedded in an enclosed porous medium is studied numerically. The non‐Darcianeffects as well as the…

Abstract

The problems of transient natural convection from a corrugated plate embedded in an enclosed porous medium is studied numerically. The non‐Darcian effects as well as the acceleration terms are taken into consideration in the momentum equation. The governing equations in terms of vorticity, stream function and temperature are expressed in a body‐fitted coordinates system, which were solved numerically by the finite difference method. Results are presented in terms of streamlines and isotherms, local and average Nusselt numbers, with Darcy‐Rayleigh number ranging from 0 to 1000, and Darcy number from 10–4 to 10–1, for several aspect ratios of the cavity and plate positions. The flow and heat transfer characteristics for a corrugated plate and a flat plate and the numerical results solved with four different mathematical models are also compared.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 5 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 2015

M. A. Sheremet and Ioan Pop

Steady-state free convection heat transfer in a right-angle triangular porous enclosure filled by a nanofluid using the mathematical nanofluid model proposed by Buongiorno has…

Abstract

Purpose

Steady-state free convection heat transfer in a right-angle triangular porous enclosure filled by a nanofluid using the mathematical nanofluid model proposed by Buongiorno has been numerically analyzed. The paper aims to discuss this issue.

Design/methodology/approach

The nanofluid model takes into account the Brownian diffusion and thermophoresis effects. The governing equations formulated in terms of the vorticity-stream function variables were solved by finite difference method.

Findings

It has been found that the average Nusselt number is an increasing function of the Rayleigh and Lewis numbers and a decreasing function of Brownian motion, buoyancy-ratio and thermophoresis parameters. At the same time the average Sherwood number is an increasing function of the Rayleigh and Lewis numbers, Brownian motion and thermophoresis parameters and a decreasing function of buoyancy-ratio parameter.

Originality/value

The present results are new and original for the heat transfer and fluid flow in a right-angle triangular porous enclosure filled by a nanofluid using the mathematical nanofluid model proposed by Buongiorno. The results would benefit scientists and engineers to become familiar with the flow behaviour of such nanofluids, and the way to predict the properties of this flow for possibility of using nanofluids in advanced nuclear systems, in industrial sectors including transportation, power generation, chemical sectors, ventilation, air-conditioning, etc.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 October 2014

M. Sheikholeslami, R. Ellahi, Mohsan Hassan and Soheil Soleimani

The purpose of this paper is to study the effects of natural convection heat transfer in a cold outer circular enclosure containing a hot inner elliptic circular cylinder. The…

1068

Abstract

Purpose

The purpose of this paper is to study the effects of natural convection heat transfer in a cold outer circular enclosure containing a hot inner elliptic circular cylinder. The fluid in the enclosure is Cu-water nanofluid. The main emphasis is to find the numerical treatment for the said mathematical model. The effects of Rayleigh number, inclined angle of elliptic inner cylinder, effective of thermal conductivity and viscosity of nanofluid, volume fraction of nanoparticles on the flow and heat transfer characteristics have been examined.

Design/methodology/approach

A very effective and higher order numerical scheme Control Volume-based Finite Element Method (CVFEM) is used to solve the resulting coupled equations. The numerical investigation is carried out for different governing parameters namely; the Rayleigh number, nanoparticle volume fraction and inclined angle of elliptic inner cylinder. The effective thermal conductivity and viscosity of nanofluid are calculated using the Maxwell-Garnetts (MG) and Brinkman models, respectively.

Findings

The results reveal that Nusselt number increases with an increase of nanoparticle volume fraction, Rayleigh numbers and inclination angle. Also it can be found that increasing Rayleigh number leads to a decrease in heat transfer enhancement. For high Rayleigh number the minimum heat transfer enhancement ratio occurs at.

Originality/value

To the best of the authors’ knowledge, no such analysis is available in the literature which can describe the natural convection heat transfer in a nanofluid filled enclosure with elliptic inner cylinder by means of CVFEM.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 56