Search results

1 – 10 of over 2000
Article
Publication date: 1 December 2001

Jaroslav Mackerle

Gives a bibliographical review of the finite element meshing and remeshing from the theoretical as well as practical points of view. Topics such as adaptive techniques for meshing

1896

Abstract

Gives a bibliographical review of the finite element meshing and remeshing from the theoretical as well as practical points of view. Topics such as adaptive techniques for meshing and remeshing, parallel processing in the finite element modelling, etc. are also included. The bibliography at the end of this paper contains 1,727 references to papers, conference proceedings and theses/dissertations dealing with presented subjects that were published between 1990 and 2001.

Details

Engineering Computations, vol. 18 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 September 2015

Igor V Miroshnichenko and M A Sheremet

The purpose of this paper is to present transient turbulent natural convection with surface thermal radiation in a square differentially heated enclosure using non-primitive…

Abstract

Purpose

The purpose of this paper is to present transient turbulent natural convection with surface thermal radiation in a square differentially heated enclosure using non-primitive variables like stream function and vorticity.

Design/methodology/approach

The governing equations formulated in dimensionless variables “stream function, vorticity and temperature,” within the Boussinesq approach taking into account the standard two equation k-ε turbulence model with physical boundary conditions have been solved using an iterative implicit finite-difference method.

Findings

It has been found that using of the presented algebraic transformation of the mesh allows to effectively conduct numerical analysis of turbulent natural convection with thermal surface radiation. It has been shown that the average convective Nusselt number increases with the Rayleigh number and decreases with the surface emissivity, while the average radiative Nusselt number is an increasing function of these key parameters. It has been shown that a presence of surface thermal radiation effect leads to an expansion of the eddy viscosity zones close to the walls.

Originality/value

It should be noted that for the first time in this paper we used stream function and vorticity variables with very effective algebraic transformation of the mesh in order to create a non-uniform mesh for an analysis of turbulent flow. Such method allows to reduce the computational time essentially in comparison with using of the primitive variables. The considered method has been successfully validated on the basis of the experimental and numerical data of other authors in case of turbulent natural convection without thermal radiation. The used numerical method would benefit scientists and engineers to become familiar with the analysis of turbulent convective heat and mass transfer, and the way to predict the properties of the turbulent flow in advanced nuclear systems, in industrial sectors including transportation, power generation, chemical sectors, ventilation, air-conditioning, etc.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 August 2019

Loïc Burger, Christophe Geuzaine, Francois Henrotte and Benoît Vanderheyden

Finite element (FE) models are considered for the penetration of magnetic flux in type-II superconductor films. A shell transformation allows boundary conditions to be applied at…

Abstract

Purpose

Finite element (FE) models are considered for the penetration of magnetic flux in type-II superconductor films. A shell transformation allows boundary conditions to be applied at infinity with no truncation approximation. This paper aims to determine the accuracy and efficiency of shell transformation techniques in such non-linear eddy current problems.

Design/methodology/approach

A three-dimensional H – ϕ formulation is considered, where the reaction field is calculated in the presence of a uniform applied field. The shell transformation is used in the far-field region, and the uniform applied field is introduced through surface terms, so as to avoid infinite energy terms. The resulting field distributions are compared against known solutions for different geometries (thin disks and thin strips in the critical state, square thin films). The influence of the shape, size and mesh quality of the far-field regions are discussed.

Findings

The formulation is shown to provide accurate results for a number of film geometries and shell transformation shapes. The size of the far-field region has to be chosen in such a way to properly capture the asymptotic decay of the fields, and a practical procedure to determine this size is provided.

Originality/value

The importance of the size of the far-field region in a shell transformation and its proximity to the conducting domains are both highlighted. This paper also provides a numerical way to apply a constant magnetic field in a given region, while the source, on which only the far-field behaviour of the applied field depends, is excluded from the model.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 March 1985

S.H. WONG and I.R. CIRIC

The finite‐element method can be used for an approximate solution of axisymmetric exterior‐field problems by truncating the unbounded domain, or by applying various techniques of…

Abstract

The finite‐element method can be used for an approximate solution of axisymmetric exterior‐field problems by truncating the unbounded domain, or by applying various techniques of coupling a finite region of interest with the remaining far region, which is properly modelled. In this paper, we propose the solution of axisymmetric exterior‐field problems by using the standard finite‐element method in a bounded, transformed domain obtained by conformal mapping from the original, unbounded one. The transformed functionals have very simple expressions and the exact transforms of the original boundary conditions are used in the transformed domain. Consequently no approximation is introduced in the proposed method and improvements in the accuracy of the solution are obtained as compared with several other methods in common usage, especially with the truncated mesh technique. A few example problems are solved and the presented method is found to be simple and computationally highly efficient. It is particularly recommended for problems with material inhomogeneities and anisotropies within large regions.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 4 no. 3
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 5 March 2018

Jianping Huang, Wenyuan Liao and Zhenchun Li

The purpose of this paper is to develop a new finite difference method for solving the seismic wave propagation in fluid-solid media, which can be described by the acoustic and…

Abstract

Purpose

The purpose of this paper is to develop a new finite difference method for solving the seismic wave propagation in fluid-solid media, which can be described by the acoustic and viscoelastic wave equations for the fluid and solid parts, respectively.

Design/methodology/approach

In this paper, the authors introduced a coordinate transformation method for seismic wave simulation method. In the new method, the irregular fluid–solid interface is transformed into a horizontal interface. Then, a multi-block coordinate transformation method is proposed to mesh every layer to curved grids and transforms every interface to horizontal interface. Meanwhile, a variable grid size is used in different regions according to the shape and the velocity within each region. Finally, a Lebedev-standard staggered coupled grid scheme for curved grids is applied in the multi-block coordinate transformation method to reduce the computational cost.

Findings

The instability in the auxiliary coordinate system caused by the standard staggered grid scheme is resolved using a curved grid viscoelastic wave field separation strategy. Several numerical examples are solved using this new method. It has been shown that the new method is stable, efficient and highly accurate in solving the seismic wave equation defined on domain with irregular fluid–solid interface.

Originality/value

First, the irregular fluid–solid interface is transformed into a horizontal interface by using the coordinate transformation method. The conversion between pressures and stresses is easy to implement and adaptive to different irregular fluid–solid interface models, because the normal stress and shear stress vanish when the normal angle is 90° in the interface. Moreover, in the new method, the strong false artificial boundary reflection and instability caused by ladder-shaped grid discretion are resolved as well.

Article
Publication date: 1 September 2003

André Buchau, Wolfgang Hafla, Friedemann Groh and Wolfgang M. Rucker

If the fast multipole method (FMM) is applied in the context of the boundary element method, the efficiency and accuracy of the FMM is significantly influenced by the used…

Abstract

If the fast multipole method (FMM) is applied in the context of the boundary element method, the efficiency and accuracy of the FMM is significantly influenced by the used hierarchical grouping scheme. Hence, in this paper, a new approach to the grouping scheme is presented to solve numerical examples with problem‐oriented meshes and higher order elements accurately and efficiently. Furthermore, with the proposed meshing strategies the efficiency of the FMM can be additionally controlled.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 22 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 1992

N.A. Golias and T.D. Tsiboukis

Two a‐posteriori error estimators are presented for adaptive mesh generation in eddy current finite element computation : the discontinuity of the magnetic flux density on the…

Abstract

Two a‐posteriori error estimators are presented for adaptive mesh generation in eddy current finite element computation : the discontinuity of the magnetic flux density on the interface between neighboring elements and the energy perturbation between 1st and 2nd order finite element meshes. Validation of the results is being accomplished by application of the adaptive refinement in the case of a T‐shaped slot embedded conductor, a problem several times approached in the literature.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 11 no. 1
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 10 July 2020

Shengnan Zhang, Z.l. Sun, Zhenliang Yu and Fanyi Guo

The purpose of this paper is to establish a transient contact position prediction method of gears at the meshing point based on the equivalent contact model.

Abstract

Purpose

The purpose of this paper is to establish a transient contact position prediction method of gears at the meshing point based on the equivalent contact model.

Design/methodology/approach

In this method, the contacting surface profiles are constantly updated by changing the pressure angle and the chord tooth thickness, which has a direct connection with the equivalent base circle radius. According to the equivalent base circle radius, the equivalent pressure angle at the pitch circle and equivalent pitch point can be calculated. The equivalent contacting surface profile is determined by the equivalent pressure angle at the pitch circle; for each meshing point, there is one equivalent pressure angle at the pitch circle. Therefore, each meshing point can be regarded as a point on the equivalent contacting surface profile.

Findings

The model is applicable to find out the contact position after a series of meshing cycles through the law of pressure angle change and intentionally kept as simple as possible with the aim to be used in further study of gear flanks at the point of the actual contact.

Practical implications

The results of the experiment are applied to the equivalent contact model to describe the transient contact position and assess the model accuracy.

Originality/value

The determination of the contact position of the worn tooth profile provides the action points of the force for the study of the contact fatigue.

Details

Engineering Computations, vol. 38 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 18 March 2022

Shengtao Lin and Zhengcai Zhao

Complex and exquisite patterns are sculpted on the surface to beautify the parts. Due to the thin-walled nature, the blank of the part is often deformed by the forming and…

Abstract

Purpose

Complex and exquisite patterns are sculpted on the surface to beautify the parts. Due to the thin-walled nature, the blank of the part is often deformed by the forming and clamping processes, disabling the nominal numerical control (NC) sculpting programs. To address this problem, a fast adaptive sculpting method of the complex surface is proposed.

Design/methodology/approach

The geometry of the blank surface is measured using on-machine measurement (OMM). The real blank surface is reconstructed using the non-uniform rational basis spline (NURBS) method. The angle-based flattening (ABF) algorithm is used to flatten the reconstructed blank surface. The dense points are extracted from the pattern on the image using the OpenCV library. Then, the dense points are quickly located on the complex surfaces to generate the tool paths.

Findings

By flattening the reconstructed surface and creating the mapping between the contour points and the planar mesh triangular patches, the tool paths can be regenerated to keep the contour of the pattern on the deformed thin-walled surface.

Originality/value

The proposed method can adjust the tool paths according to the deformation of the thin-walled part. The consistency of sculpting patterns is improved.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 3 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 29 August 2019

Song Gao, Jory Seguin, Wagdi G. Habashi, Dario Isola and Guido Baruzzi

This work aims to describe the physical and numerical modeling of a CFD solver for hypersonic flows in thermo-chemical non-equilibrium. This paper is the second of a two-part…

231

Abstract

Purpose

This work aims to describe the physical and numerical modeling of a CFD solver for hypersonic flows in thermo-chemical non-equilibrium. This paper is the second of a two-part series that concerns the application of the solver introduced in Part I to adaptive unstructured meshes.

Design/methodology/approach

The governing equations are discretized with an edge-based stabilized finite element method (FEM). Chemical non-equilibrium is simulated using a laminar finite-rate kinetics, while a two-temperature model is used to account for thermodynamic non-equilibrium. The equations for total quantities, species and vibrational-electronic energy conservation are loosely coupled to provide flexibility and ease of implementation. To accurately perform simulations on unstructured meshes, the non-equilibrium flow solver is coupled with an edge-based anisotropic mesh optimizer driven by the solution Hessian to carry out mesh refinement, coarsening, edge swapping and node movement.

Findings

The paper shows, through comparisons with experimental and other numerical results, how FEM + anisotropic mesh optimization are the natural choice to accurately simulate hypersonic non-equilibrium flows on unstructured meshes. Three-dimensional test cases demonstrate how, for high-speed flows, shocks resolution, and not necessarily boundary layers resolution, is the main driver of solution accuracy at walls. Equally distributing the error among all elements in a suitably defined Riemannian space yields highly anisotropic grids that feature well-resolved shock waves. The resulting high level of accuracy in the computation of the enthalpy jump translates into accurate wall heat flux predictions. At the opposite end, in all cases examined, high-quality but isotropic unstructured meshes gave very poor solutions with severely inadequate heat flux distributions not even featuring expected symmetries. The paper unequivocally demonstrates that unstructured anisotropically adapted meshes are the best, and may be the only, way for accurate and cost-effective hypersonic flow solutions.

Originality/value

Although many hypersonic flow solvers are developed for unstructured meshes, few numerical simulations on unstructured meshes are presented in the literature. This work demonstrates that the proposed approach can be used successfully for hypersonic flows on unstructured meshes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 2000