Search results

1 – 10 of over 4000
Article
Publication date: 11 May 2010

Bo Zhang, Jinliang He, Rong Zeng and Xidong Liang

The purpose of this paper is to introduce an efficient model for analysis of the voltage distribution along the long ceramic insulator strings in a high‐voltage tower window…

Abstract

Purpose

The purpose of this paper is to introduce an efficient model for analysis of the voltage distribution along the long ceramic insulator strings in a high‐voltage tower window, especially when the structure and parameters of the ceramic insulator are unknown. The effect of the grading ring on the voltage distribution is also investigated.

Design/methodology/approach

A circuit model composed of capacitors is used to analyze the voltage distribution along the ceramic insulator strings in a transmission tower window. The capacitances of the disk insulators, line conductors, and tower are obtained by using the finite element method, charge simulation method, boundary element method, and measurement according to their characteristics.

Findings

The model is very efficient. The voltage distribution along insulator strings can be optimized by adjusting the parameters of the grading ring. The maximum amount of voltage applied to a single insulator disk can be reduced effectively by increasing either the diameter of the grading ring or the distance from the upper surface of the grading ring to the high‐voltage end of the insulator string.

Originality/value

The model is very efficient for analysis of the voltage distribution along the long ceramic insulator strings, especially when the structure and parameters of the ceramic insulator are unknown.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 20 August 2019

Hanan Rosli, Nordiana Azlin Othman, Nor Akmal Mohd Jamail and Muhammad Nafis Ismail

This paper aims to present simulation studies on voltage and electric field characteristics for imperfect ceramic insulators using QuickFieldTM software. Based on previous…

Abstract

Purpose

This paper aims to present simulation studies on voltage and electric field characteristics for imperfect ceramic insulators using QuickFieldTM software. Based on previous studies, it is accepted that string insulator can still serve the transmission line although imperfect of certain insulator exist in a string. However, different materials of porcelain and glass type had made these insulators own different abilities to carry electricity to be transferred to the consumers.

Design/methodology/approach

Cap and pin type of porcelain and glass insulators are used as the main subject for comparison. The simulation works begins with modeling a single insulator, followed by string of ten insulators with their respective applied voltage, that is, 11 and 132 kV. The insulator was modeled in alternate current conduction analysis problem type using QuickField Professional Software. Technical parameters for porcelain and glass insulator were manually inserted in the modeling.

Findings

This paper presents an investigation on the influence of broken porcelain and glass insulators in string for voltage and electric field characteristics. For single insulator, the voltage distribution may literally reduce when experiencing external damages; whereby the broken porcelain insulator condition is worse than the glass insulator. In terms of electric field distribution, the glass insulator is badly affected compared with the porcelain insulator, as it is pulverized comprehensively.

Research limitations/implications

Further work needs to be done to establish whether the experiments of these simulations study will present coequal outcomes. This study endeavors in promoting a good example of voltage and electric field characteristics across high voltage (HV) insulator with the presence of broken insulator in the string.

Practical implications

This study is beneficial to future researchers and manufacturing companies in strategic management and research planning when they involve in the field of HV insulators. It will also serve as a future reference for academic and study purposes. This research will also educate many people on how HV insulators work.

Social implications

This study will be helpful to the industry and business practitioners in training for the additional results and knowledge to be updated in the area of HV insulators.

Originality/value

This paper presents the analysis of porcelain and glass insulators according to their respective logic conditions when broken. Consequently, the existence of a damage insulator in a string may alter the distribution of voltage and electric field which may ultimately lead to the insulation breakdown after some time. This is because the broken insulator may cause other insulators to withstand the remaining voltage allocated for that particular insulator and may affect the insulators in terms of the life span. Therefore, the distribution of voltage and electrical field characteristics in the presence of broken insulators had been studied in this project.

Details

World Journal of Engineering, vol. 16 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 2 January 2009

Marcin Hołub, Stanisław Kalisiak and Krzysztof Ruchała

The purpose of this paper is to introduce a unique multilevel, one‐phase inverter (in the multiplied full‐bridge configuration, cascaded‐type) with unequal voltage distribution

Abstract

Purpose

The purpose of this paper is to introduce a unique multilevel, one‐phase inverter (in the multiplied full‐bridge configuration, cascaded‐type) with unequal voltage distribution among the voltage levels.

Design/methodology/approach

Numerical and experimental results are discussed and the topology thereafter evaluated.

Findings

Unequal voltage distribution among voltage stages of the converter leads to increase of the output voltage resolution while simplifying the converter construction and minimizing the power switch losses. Simplorer numerical analyses as well as test stand measurements were led in order to verify properties of the system. Using the voltage distribution in the proportion of 6/2/1 leads to improved utilisation of power switches used in the means of voltage, current and switching frequency. FFT analysis was implemented in order to explore the frequency domain properties of the control apparatus.

Practical implications

The results allow improvement of power switch utilisation and output voltage resolution of cascaded, three‐stage multilevel converter topologies and voltage output filter optimisation for multilevel power electronic converters.

Originality/value

A new concept of voltage distribution is provided and described, a dedicated DSP‐based control system was developed as well as a small‐scale converter prototype, test stand measurement results are provided.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 19 September 2017

Tobias Lühn, Genoveva Schmidtmann and Jutta Geldermann

The aim of this paper is to introduce a newly developed multi-criteria analysis for the comparison of two grid expansion alternatives, conventional and voltage-regulated…

Abstract

Purpose

The aim of this paper is to introduce a newly developed multi-criteria analysis for the comparison of two grid expansion alternatives, conventional and voltage-regulated distribution transformer. The case study comprises environmental, economic, technical and social aspects.

Design/methodology/approach

The newly developed method decision condition Preference Ranking Organization METHod for Enrichment Evaluation (DC-PROMETHEE) combines scenario planning with the multi-attribute decision-making method PROMETHEE. DC-PROMETHEE supports the decision-maker to evaluate the total potential of an alternative considering a large number of decision conditions. The calculated performance indicator supports the decision-maker to select the best alternative.

Findings

The voltage-regulated distribution transformer shows a high overall potential in the present case study. This leads to the recommendation to the investigated distribution system operator to include the voltage-regulated distribution transformers as a grid expansion measure.

Practical implications

The DC-PROMETHEE can be applied to other distribution system operators by considering their individual grid topology and preferences. Other fields of application are infrastructure investments in the service area, in which expansion alternatives are evaluated in a large number of decision conditions. Examples include telecommunication, gas supply, water supply, sewage and rail networks.

Originality/value

This paper develops the DC-PROMETHEE approach. The DC-PROMETHEE enables the multi-criteria evaluation of a few alternatives in a large number of decision conditions.

Details

International Journal of Energy Sector Management, vol. 12 no. 1
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 20 September 2018

Daniel Roger and Ewa Napieralska-Juszczak

High-temperature (HT°) motors are made with inorganic coils wound with a ceramic-coated wire. They must be carefully designed because the HT° insulating materials have a lower…

Abstract

Purpose

High-temperature (HT°) motors are made with inorganic coils wound with a ceramic-coated wire. They must be carefully designed because the HT° insulating materials have a lower breakdown voltages than the polymers used for insulating standard machines.

Design/methodology/approach

The voltage distribution between stator coils is computed with high-frequency (HF) equivalent circuits that consider the magnetic couplings and the stray capacitances. Two time scales are used for getting a fast computation of very short voltage spikes. For the first step, a medium time scale analysis is performed considering a simplified equivalent circuit made without any stray capacitance but with the full PWM pattern and the magnetic couplings. For the second step, a more detailed HF equivalent circuit computes voltage spikes during short critical time windows.

Findings

The computation made during the first step provides the critical time windows and the initial values of the state variables to the second one. The rise and fall time of the electronic switches have a minor influence on the maximum voltage stress. Conversely, the connection cable length and the common-mode capacitances have a large influence.

Research limitations/implications

HF equivalent circuits cannot be used with random windings but only to formed coils that have a deterministic position of turns.

Practical implications

The proposed method can be used designing of HT° machine windings fed by PWM inverter and for improving the coils of standard machine used in aircraft’s low-pressure environments.

Originality/value

The influence of grounding system of the DC link is considered for computing the voltage spikes in the motor windings.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2014

Vladimir Alexeevich Prakht, Vladimir Alexandrovich Dmitrievskii, Fedor Nikitich Sarapulov, Anton Aleksandrovich Dmitrievskii and Nail Ramazanovich Safin

Nowadays, various software is available for simulating physical processes in induction heating. The software is often limited in its ability to simulate the billet movement…

Abstract

Purpose

Nowadays, various software is available for simulating physical processes in induction heating. The software is often limited in its ability to simulate the billet movement, sometimes assuming uniform distribution of voltages on the inductor winding, uniformity of the physical properties of the billet, etc. The mathematical model of moving cylindrical ferromagnetic billets described in this paper takes into account the billet's movement, the billet phase heterogeneity and the nonuniformity of the supply voltage distribution in the inductor turns. The paper aims to discuss these issues.

Design/methodology/approach

The research methodology is based on FEM analysis of the coupled problem, including the electromagnetic and thermal boundary problem with additional algebraic equations, using Comsol 3.5a software.

Findings

The electromagnetic and temperature field in the billet and the voltage distribution on the winding turns have been calculated. The phase distribution in the billet has been predicted. Significant interaction of the nonuniformity of the supply voltage distribution, the billet's movement, the billet phase heterogeneity and side effect on the ends of the inductor have been shown.

Practical implications

The results received can be used for designing the induction heating unit for moving cylindrical billets made from ferromagnetic material and improving their characteristics.

Originality/value

Investigation of moving cylindrical ferromagnetic billets induction heating can be done by numerical solving the coupled problem including the electromagnetic and thermal boundary problem with additional algebraic equations for the supply voltage distribution.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 1/2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 November 2016

Daniel Roger, Vadim Iosf and Sylvain Babicz

The purpose of this paper is to present a method for computing voltage spikes endured by the insulation of the first coils of high-temperature (HT°) synchronous machines fed by…

Abstract

Purpose

The purpose of this paper is to present a method for computing voltage spikes endured by the insulation of the first coils of high-temperature (HT°) synchronous machines fed by PWM inverters that deliver fast-fronted voltage pulses.

Design/methodology/approach

The transient state following each steep edge is computed by SPICE using the global high-frequency (HF) equivalent circuit of the motor winding. This equivalent circuit is automatically built using the proposed elementary coil model. Two inorganic HT° technologies are compared: the first one uses a round copper wire insulated by a thin ceramic layer and the second one is made with an anodized aluminum strip.

Findings

The winding made with an anodized aluminum strip, which has a higher turn-to-turn capacitance, yields a better voltage distribution between coils of the machine.

Research limitations/implications

The elementary coil equivalent circuit is computed from impedance measurements performed on an elementary coil. Another starting point could be developed with an FE analysis to determine the parameters of the HF equivalent circuit, which would avoid the need for a prototype coil before the machine design.

Practical implications

For inorganic motors, the insulation layers have poorer electrical characteristics compared with standard organic ones. Therefore, the computation of voltage spikes distribution along the coils of each phase represents a major issue in the design of HT° machines.

Originality/value

The presented approach is a step toward the design of HT° (400-500°C) actuators fed by PWM inverters based on fast SiC electronic switches.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 35 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 November 2015

Alexander Sergeevich Tonkoshkur and Alexander Vladimirovich Ivanchenko

– The purpose of this paper is modeling the effect of negative capacitance in the capacitance-voltage characteristic of the intergranular potential barrier of varistor structure.

86

Abstract

Purpose

The purpose of this paper is modeling the effect of negative capacitance in the capacitance-voltage characteristic of the intergranular potential barrier of varistor structure.

Design/methodology/approach

The modeling of the capacitance-voltage characteristic of the intergranular barrier in metal oxide varistor ceramics is based on the development of the algorithm. It includes all the known mechanisms of electrotransfer in a wide range of voltages and currents, and also takes into account the voltage drop on the intergranular interlayer of intergranular potential barrier.

Findings

The models and algorithms for calculating the capacitance-voltage characteristics of a single intergranular potential barrier with the use of the most established understanding used at the interpretation of the nonlinear conductivity intergranular barrier are developed. The results of the capacitance-voltage characteristics modeling correspond to the existing understanding of the electrical properties on the ac current varistor ceramics are based on zinc oxide. The model allows to predict the behavior of varistors on the alternating current (voltage).

Originality/value

It is established that the recharge of the surface localized states occurs when a voltage is applied to the varistor structure, it can lead to a relaxation decrease in the width of the potential barrier overcome by tunneling electrons in the field emission from the conduction band of the one crystallite in the conduction band of the other crystallite and thus to the current backlog of applied voltage on the phase (i.e. the expression of the negative capacitance effect).

Details

Multidiscipline Modeling in Materials and Structures, vol. 11 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 17 September 2020

Ernestina Mawushie Amewornu and Nnamdi I. Nwulu

This research studies the impact of introducing distributed generators (DGs) into a distribution network. The aim of this paper is to optimally site DGs based on economic…

Abstract

Purpose

This research studies the impact of introducing distributed generators (DGs) into a distribution network. The aim of this paper is to optimally site DGs based on economic, environmental and reliability indices are presented.

Design/methodology/approach

The considered network was modelled by using the network’s line parameters and capacity of the load bus with the help of Power System Analysis Toolbox. The location of the DG is based on voltage stability index and power loss reduction index. The DG energy sources considered are the diesel generator, solar photo-voltaic (PV) and wind generator, and the objectives were to minimize cumulative cost while maximizing reliability of the network. The Advanced Interactive Multidimensional Modelling System was used for the mathematical modelling.

Findings

The obtained results in the cases of introducing renewable energy into a network improves network performance. The benefits of renewable energy on the distribution network measured in terms of electricity production cost, gas emission cost, fuel cost and value of energy not supplied were positive. The research also showed that the total benefit of renewable energy reduces as the price of the renewable generators increases.

Originality/value

This paper introduces a new approach to determining the optimal location of DG for reducing line losses and improved voltage profile. A new cost modelling function based on external grid power transfer cost, technical losses and cost because of the various energies source is also introduced.

Details

Journal of Engineering, Design and Technology , vol. 19 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 2 March 2012

E. Agheb, E. Hashemi, S.A. Mousavi and H.K. Hoidalen

The purpose of this paper is to study very fast transient overvoltages (VFTOs) in the secondary winding of air‐cored Tesla transformers and also study the resulting electric field…

Abstract

Purpose

The purpose of this paper is to study very fast transient overvoltages (VFTOs) in the secondary winding of air‐cored Tesla transformers and also study the resulting electric field stresses.

Design/methodology/approach

An exhaustive model based on Multi‐conductor Transmission Lines (MTLs) theory has been used. The governing telegraphist's equations have been solved by Finite Difference Time Domain (FDTD) method.

Findings

The results demonstrated that there are some overvoltages at the end and middle turns that should be considered in insulation design. The magnitudes of these overvoltages are several times more than the steady state value of the corresponding turn which cause very high electric field stresses.

Originality/value

The paper describes results obtained from an original and innovative implementation of FDTD method in transmission line modelling and is applied properly to air‐cored pulse transformers.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 4000