Search results

1 – 10 of 38
Article
Publication date: 2 March 2012

E. Agheb, E. Hashemi, S.A. Mousavi and H.K. Hoidalen

The purpose of this paper is to study very fast transient overvoltages (VFTOs) in the secondary winding of air‐cored Tesla transformers and also study the resulting electric field…

Abstract

Purpose

The purpose of this paper is to study very fast transient overvoltages (VFTOs) in the secondary winding of air‐cored Tesla transformers and also study the resulting electric field stresses.

Design/methodology/approach

An exhaustive model based on Multi‐conductor Transmission Lines (MTLs) theory has been used. The governing telegraphist's equations have been solved by Finite Difference Time Domain (FDTD) method.

Findings

The results demonstrated that there are some overvoltages at the end and middle turns that should be considered in insulation design. The magnitudes of these overvoltages are several times more than the steady state value of the corresponding turn which cause very high electric field stresses.

Originality/value

The paper describes results obtained from an original and innovative implementation of FDTD method in transmission line modelling and is applied properly to air‐cored pulse transformers.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 March 2012

Casimiro Álvarez‐Mariño, Xose M. Lopez‐Fernandez, Antonio J.M. Jacomo Ramos, Ricardo A.F. Castro Lopes and José Miguel Duarte Couto

This paper aims to present and define a factor to assess the severity supported along transformer windings when the transformer is subjected to a transient voltage waveform due a…

Abstract

Purpose

This paper aims to present and define a factor to assess the severity supported along transformer windings when the transformer is subjected to a transient voltage waveform due a switching operation of a vacuum circuit breaker (VCB). This factor is identified as time domain severity factor (TDSF).

Design/methodology/approach

Since each of switching waveforms depend on the electrical interaction between transformer and the VCB, it implies that each of those combinations is characterized by a TDSF. To obtain the TDSF implies to manage two different models of the transformer under consideration. Firstly, a terminal model (black box model) of the transformer is built to compute the switching waveform at transformer terminals during VCB operation. Then, a detailed model (white box model) of the transformer is used to compute the internal transient voltage distribution along transformer windings.

Findings

A practical application of a power system consisting of a real transformer connected to a VCB is performed to show the sensibility of the TDSF coefficient.

Originality/value

Previous works found in the literature already consider the evaluation of the overvoltages in transformer associated to switching transient by coefficients, such as the frequency domain severity factor (FDSF). But this factor, as a global coefficient, could not assess the severity along windings to localize dielectrically weak points. Therefore, this paper overcomes this limitation proposing an alternative coefficient identified as time domain severity factor (TDSF).

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 8 May 2018

Hugo Rodriguez-Ignacio, Xose M. Lopez-Fernandez and Casimiro Álvarez-Mariño

The purpose of this paper is to present a methodology based on an optimizer linked with electric finite element method (FEM) for automating the optimized design of power…

Abstract

Purpose

The purpose of this paper is to present a methodology based on an optimizer linked with electric finite element method (FEM) for automating the optimized design of power transformer insulation system structures.

Design/methodology/approach

The proposed methodology combines two stages to obtain the optimized design of transformer insulation system structures. First, an analytical calculation is carried out with the optimizer to search a candidate solution. Then, the candidate solution is numerically checked in detail to validate its consistency. Otherwise, these two steps are iteratively repeated until the optimizer finds a candidate solution according to the objective function.

Findings

The solutions found applying the proposed methodology reduce the inter-electrode distances compared to those insulation designs referenced in the literature for the same value of safety margin.

Originality/value

The proposed methodology explores a wide range of insulation system structures in an automated way which is not possible to do with the classical trial-and-error approach based on personal expertise.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 28 October 2014

Morteza Eslamian and Behrooz Vahidi

To study very fast transients in transformers, it is required to compute the inductance matrix of windings at very high frequencies (MHz). The core acts as a flux barrier at very

Abstract

Purpose

To study very fast transients in transformers, it is required to compute the inductance matrix of windings at very high frequencies (MHz). The core acts as a flux barrier at very high frequencies, affecting the values of the self and mutual inductances of windings. In the previous work by the authors, analytical methods for computation of the inductance matrix at very high frequencies, using a 2-D planar approximation of the transformer geometry, were presented. The purpose of this paper is to present analytical methods for the same problem in cylindrical coordinates which do not suffer from the previous approximations in geometry.

Design/methodology/approach

A method based on the Fourier integral transform is described for the calculation of inductance outside the core window. For the region inside the core window, inductance formulas are extracted using the Fourier series analysis.

Findings

The final expressions are accurate and fast convergent. Comparisons with FEM simulations and previous 2-D planar formula prove the excellent accuracy of the proposed inductance formulas.

Originality/value

The value of the presented formulas accounts for considering the effect of iron core on inductances in transformer very fast transient analysis.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Content available
Article
Publication date: 2 March 2012

Xose M. Lopez-Fernandez

399

Abstract

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 2
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 26 September 2023

Alexander Sergeevich Tonkoshkur and Alexander Vladimirovich Ivanchenko

The purpose of this study is to model the dependences of the output voltage, temperature, current and electrical power dissipation of a voltage limiter based on a two-layer…

Abstract

Purpose

The purpose of this study is to model the dependences of the output voltage, temperature, current and electrical power dissipation of a voltage limiter based on a two-layer varistor–posistor structure on time and analysis the influence of operating modes and design parameters of such a limiter on these characteristics.

Design/methodology/approach

The behavior of the limiting voltage, temperature and other parameters of the voltage limiter when an input constant overvoltage is applied is studied by the simulation method. The voltage limiter was a two-layer construction. One layer was a zinc oxide ceramic varistor. The second layer was a posistor polymer composite with a nanocarbon filler of PolySwitch technology.

Findings

The output voltage across the varistor layer decreases and reaches some fixed value related to its breakdown voltage after applying a constant overvoltage to the structure over time. The temperature of the structure increases to some steady state value, while the current decreases significantly. The amplitude of the transient current pulse increases, its duration and energy of the transient process decrease with increasing overvoltage. An increase in the internal resistance of the overvoltage source can cause a decrease in the amplitude and an increase in the duration of transient currents.

Originality/value

The ranges of values for the activation energy of conduction of the varistor layer in weak electric fields, the intensity of heat exchange between the structure under study and the environment are determined to ensure the stable operation of this structure as a voltage limiter. The results obtained make it possible to select the necessary parameters of the indicated structures to ensure the required operating modes of the voltage limiter for various applications.

Article
Publication date: 1 January 1992

P.P. Campostrini, G. Chitarin, A. Stella and G. Zollino

This paper deals with the problem of internal overvoltages within large coils due to fast‐rising surges. Numerical simulations are performed on a lumped‐parameter equivalent…

Abstract

This paper deals with the problem of internal overvoltages within large coils due to fast‐rising surges. Numerical simulations are performed on a lumped‐parameter equivalent circuit, representing a coil of the magnetic system of a thermo‐nuclear fusion experiment. Inductances and capacitances are computed through numerical methods which ensure a good precision even with complex geometries. The effect of the conductive painting on the outer surface of the coil is also taken into account. The simulation results are compared with a number of measurements on a full‐size prototype coil. Turn‐to‐earth, as well as inter‐turn overvoltages, are both computed and measured in many grounding conditions. The experimental results fit well with computation and theoretical prediction.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 11 no. 1
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 6 November 2017

Lei Qi, Zhiyuan Shen, Jianjian Gao, Guoliang Zhao, Xiang Cui and Wei Kang

This paper aims to establish the wideband model of a sub-module in a modular multilevel converter (MMC) and analyze the switch transients of the sub-module.

Abstract

Purpose

This paper aims to establish the wideband model of a sub-module in a modular multilevel converter (MMC) and analyze the switch transients of the sub-module.

Design/methodology/approach

The paper builds an MMC sub-module test circuit and conducts dynamic tests both with and without the bypass thyristor. Then, it builds the wideband model of the MMC sub-module and extracts the model parameters. Finally, based on the wideband model, it simulates the switch transients and analyzes the oscillation mechanism.

Findings

The dynamic testing shows the bypass thyristor will add oscillations during switch transients, especially during the turn-on process. The thyristor acts like a small capacitor and reduces the total capacitor in the turn-on circuit loop, thus causing under-damped oscillations.

Originality/value

This paper found that the bypass thyristor will influence the MMC sub-module switch transients under certain circumstances. This paper proposes a partial inductance extraction procedure for the MMC sub-module and builds a wideband model of the sub-module. The wideband model is used to analyze and explain the switch transients, and can be further used for insulated gate bipolar transistor switch oscillation inhibition and sub-module design optimization.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 February 1989

Bennett J. Price

Uninterruptible Power Supply (UPS) systems are typically designed to provide power to computers for five to thirty minutes after all utility company power has failed. In addition…

Abstract

Uninterruptible Power Supply (UPS) systems are typically designed to provide power to computers for five to thirty minutes after all utility company power has failed. In addition to providing blackout and brownout protection, many UPS systems also protect against spikes, surges, sags, and noise, and some also offer many of the features found in power distribution units (PDUs). The major components or subsystems of a typical UPS system are detailed, and a sample bid specification is appended. Three sidebars discuss UPSs and air conditioning, the maintenance bypass switch (MBS), and literature for further reading.

Details

Library Hi Tech, vol. 7 no. 2
Type: Research Article
ISSN: 0737-8831

Article
Publication date: 1 April 1990

Francois Martzloff

Provides a definition of the many different forms of powertransient as well as explaining their causes and suggesting remedies foreach type of transient which can be taken to…

Abstract

Provides a definition of the many different forms of power transient as well as explaining their causes and suggesting remedies for each type of transient which can be taken to avoid damage to computer systems. Lists possible unexpected problems and the side effects to be expected if protection is incorrectly installed.

Details

OCLC Micro, vol. 6 no. 4
Type: Research Article
ISSN: 8756-5196

Keywords

1 – 10 of 38