Search results

1 – 10 of 45
Open Access
Article
Publication date: 20 August 2024

Jianyong Liu, Xueke Luo, Long Li, Fangyuan Liu, Chuanyang Qiu, Xinghao Fan, Haoran Dong, Ruobing Li and Jiahao Liu

Utilizing electrical discharge machining (EDM) to process micro-holes in superalloys may lead to the formation of remelting layers and micro-cracks on the machined surface. This…

Abstract

Purpose

Utilizing electrical discharge machining (EDM) to process micro-holes in superalloys may lead to the formation of remelting layers and micro-cracks on the machined surface. This work proposes a method of composite processing of EDM and ultrasonic vibration drilling for machining precision micro-holes in complex positions of superalloys.

Design/methodology/approach

A six-axis computer numerical control (CNC) machine tool was developed, whose software control system adopted a real-time control architecture that integrates electrical discharge and ultrasonic vibration drilling. Among them, the CNC system software was developed based on Windows + RTX architecture, which could process the real-time processing state received by the hardware terminal and adjust the processing state. Based on the SoC (System on Chip) technology, an architecture for a pulse generator was developed. The circuit of the pulse generator was designed and implemented. Additionally, a composite mechanical system was engineered for both drilling and EDM. Two sets of control boards were designed for the hardware terminal. One set was the EDM discharge control board, which detected the discharge state and provided the pulse waveform for turning on the transistor. The other was a relay control card based on STM32, which could meet the switch between EDM and ultrasonic vibration, and used the Modbus protocol to communicate with the machining control software.

Findings

The mechanical structure of the designed composite machine tool can effectively avoid interference between the EDM spindle and the drilling spindle. The removal rate of the remelting layer on 1.5 mm single crystal superalloys after composite processing can reach over 90%. The average processing time per millimeter was 55 s, and the measured inner surface roughness of the hole was less than 1.6 µm, which realized the  micro-hole machining without remelting layer, heat affected zone and micro-cracks in the single crystal superalloy.

Originality/value

The test results proved that the key techniques developed in this paper were suite for micro-hole machining of special materials.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 15 October 2021

Paulthurai Rajesh, Francis H. Shajin and Kumar Cherukupalli

The purpose of this paper is to track the maximal power of wind energy conversion system (WECS) and enhance the search capability for WECS maximum power point tracking (MPPT).

Abstract

Purpose

The purpose of this paper is to track the maximal power of wind energy conversion system (WECS) and enhance the search capability for WECS maximum power point tracking (MPPT).

Design/methodology/approach

The hybrid technique is the combination of tunicate swarm algorithm (TSA) and radial basis function neural network.

Findings

TSA gets input parameters from the rectifier outputs such as rectifier direct current (DC) voltage, DC current and time. From the input parameters, it enhances the reduced fault power of rectifier and generates training data set based on the MPPT conditions. The training data set is used in radial basis function. During the execution time, it produces the rectifier reference DC side voltage that is converted to control pulses of inverter switches.

Originality/value

Finally, the proposed method is executed in MATLAB/Simulink site, and the performance is compared with different existing methods like particle swarm optimization algorithm and hill climb searching technique. Then the output illustrates the performance of the proposed method and confirms its capability to solve issues.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 7 August 2024

Funda Demir

The energy generation process through photovoltaic (PV) panels is contingent upon uncontrollable variables such as wind patterns, cloud cover, temperatures, solar irradiance…

Abstract

Purpose

The energy generation process through photovoltaic (PV) panels is contingent upon uncontrollable variables such as wind patterns, cloud cover, temperatures, solar irradiance intensity and duration of exposure. Fluctuations in these variables can lead to interruptions in power generation and losses in output. This study aims to establish a measurement setup that enables monitoring, tracking and prediction of the generated energy in a PV energy system to ensure overall system security and stability. Toward this goal, data pertaining to the PV energy system is measured and recorded in real-time independently of location. Subsequently, the recorded data is used for power prediction.

Design/methodology/approach

Data obtained from the experimental setup include voltage and current values of the PV panel, battery and load; temperature readings of the solar panel surface, environment and the battery; and measurements of humidity, pressure and radiation values in the panel’s environment. These data were monitored and recorded in real-time through a computer interface and mobile interface enabling remote access. For prediction purposes, machine learning methods, including the gradient boosting regressor (GBR), support vector machine (SVM) and k-nearest neighbors (k-NN) algorithms, have been selected. The resulting outputs have been interpreted through graphical representations. For the numerical interpretation of the obtained predictive data, performance measurement criteria such as mean absolute error (MAE), mean squared error (MSE), root mean squared error (RMSE) and R-squared (R2) have been used.

Findings

It has been determined that the most successful prediction model is k-NN, whereas the prediction model with the lowest performance is SVM. According to the accuracy performance comparison conducted on the test data, k-NN exhibits the highest accuracy rate of 82%, whereas the accuracy rate for the GBR algorithm is 80%, and the accuracy rate for the SVM algorithm is 72%.

Originality/value

The experimental setup used in this study, including the measurement and monitoring apparatus, has been specifically designed for this research. The system is capable of remote monitoring both through a computer interface and a custom-developed mobile application. Measurements were conducted on the Karabük University campus, thereby revealing the energy potential of the Karabük province. This system serves as an exemplary study and can be deployed to any desired location for remote monitoring. Numerous methods and techniques exist for power prediction. In this study, contemporary machine learning techniques, which are pertinent to power prediction, have been used, and their performances are presented comparatively.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 5 February 2024

Oluwadamilola Esan, Nnamdi I. Nwulu, Love Opeyemi David and Omoseni Adepoju

This study aims to investigate the impact of the 2013 privatization of Nigeria’s energy sector on the technical performance of the Benin Electricity Distribution Company (BEDC…

Abstract

Purpose

This study aims to investigate the impact of the 2013 privatization of Nigeria’s energy sector on the technical performance of the Benin Electricity Distribution Company (BEDC) and its workforce.

Design/methodology/approach

This study used a questionnaire-based approach, and 196 participants were randomly selected. Analytical tools included standard deviation, Spearman rank correlation and regression analysis.

Findings

Before privatization, the energy sector, managed by the power holding company of Nigeria, suffered from inefficiencies in fault detection, response and billing. However, privatization improved resource utilization, replaced outdated transformers and increased operational efficiency. However, in spite of these improvements, BEDC faces challenges, including unstable voltage generation and inadequate staff welfare. This study also highlighted a lack of experience among the trained workforce in emerging electricity technologies such as the smart grid.

Research limitations/implications

This study’s focus on BEDC may limit its generalizability to other energy companies. It does not delve into energy sector privatization’s broader economic and policy implications.

Practical implications

The positive outcomes of privatization, such as improved resource utilization and infrastructure investment, emphasize the potential benefits of private ownership and management. However, voltage generation stability and staff welfare challenges call for targeted interventions. Recommendations include investing in voltage generation enhancement, smart grid infrastructure and implementing measures to enhance employee well-being through benefit plans.

Social implications

Energy sector enhancements hold positive social implications, uplifting living standards and bolstering electricity access for households and businesses.

Originality/value

This study contributes unique insights into privatization’s effects on BEDC, offering perspectives on preprivatization challenges and advancements. Practical recommendations aid BEDC and policymakers in boosting electricity distribution firms’ performance within the privatization context.

Details

International Journal of Energy Sector Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 22 March 2021

Sathish K. R. and T. Ananthapadmanabha

This paper aims to propose, the multi-objective method for optimal planning and operation of distributed generators (DGs) on distribution system (DS) using hybrid technique is…

Abstract

Purpose

This paper aims to propose, the multi-objective method for optimal planning and operation of distributed generators (DGs) on distribution system (DS) using hybrid technique is proposed.

Design/methodology/approach

The proposed hybrid technique denotes hybrid wrapper of black widow optimization algorithm (BWOA) and bear smell search algorithm (BSSA). BWOA accelerates the convergence speed with combination of the search strategy of BSSA; hence, it is named as improved black widow-bear smell search algorithm (IBWBSA) technique.

Findings

The multiple-objective operation denotes reducing generation cost, power loss, voltage deviation with optimally planning and operating the DS. For setting up the DG units on DS, IBWBSA technique is equipped to simultaneously reconfigure and find the optimal areas.

Originality/value

In this planning model, the constraints are power balance, obvious power flow limit, bus voltage, distribution substation’s capacity and cost. Then, proposed multiple-objective hybrid method to plan electrical distribution scheme is executed in the MATLAB/Simulink work site.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 28 June 2024

Partha Protim Das and Shankar Chakraborty

Grey relational analysis (GRA) has already proved itself as an efficient tool for multi-objective optimization of many of the machining processes. In GRA, the distinguishing…

Abstract

Purpose

Grey relational analysis (GRA) has already proved itself as an efficient tool for multi-objective optimization of many of the machining processes. In GRA, the distinguishing coefficient (ξ) plays an important role in identifying the optimal parametric combinations of the machining processes and almost all the past researchers have considered its value as 0.5. In this paper, based on past experimental data, the application of GRA is extended to dynamic GRA (DGRA) to optimize two electrochemical machining (ECM) processes.

Design/methodology/approach

Instead of a static distinguishing coefficient, this paper considers dynamic distinguishing coefficient for each of the responses for both the ECM processes under consideration. Based on these coefficients, the application of DGRA leads to determination of the dynamic grey relational grade (DGRG) and grey relational standard deviation (GRSD), helping in initial ranking of the alternative experimental trials. Considering the ranks obtained by DGRG and GRSD, a composite rank in terms of rank product score is obtained, aiding in final rankings of the experimental trials for both the ECM processes.

Findings

In the first example, the maximum material removal rate (MRR) would be obtained at an optimal combination of ECM parameters as electrolyte concentration = 2 mol/l, voltage = 16V and current = 4A, while another parametric intermix as electrolyte concentration = 2 mol/l, voltage = 14V and current = 2A would result in minimum radial overcut and delamination. For the second example, an optimal combination of ECM parameters as electrode temperature = 30°C, voltage = 12V, duty cycle = 90% and electrolyte concentration = 15 g/l would simultaneously maximize MRR and minimize surface roughness and conicity.

Originality/value

In this paper, two ECM operations are optimized using a newly developed but yet to be popular multi-objective optimization tool in the form of the DGRA technique. For both the examples, the derived rankings of the ECM experiments exactly match with those obtained by the past researchers. Thus, DGRA can be effectively adopted to solve parametric optimization problems in any of the machining processes.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 30 April 2024

Ignacio Jesús Álvarez Gariburo, Hector Sarnago and Oscar Lucia

Plasma technology has become of great interest in a wide variety of industrial and domestic applications. Moreover, the application of plasma in the domestic field has increased…

Abstract

Purpose

Plasma technology has become of great interest in a wide variety of industrial and domestic applications. Moreover, the application of plasma in the domestic field has increased in recent years due to its applications to surface treatment and disinfection. In this context, there is a significant need for versatile power generators able to generate a wide range of output voltage/current ranging from direct current (DC) to tens of kHz in the range of kVs. The purpose of this paper is to develop a highly versatile power converter for plasma generation based on a multilevel topology.

Design/methodology/approach

This paper proposes a versatile multilevel topology able to generate versatile output waveforms. The followed methodology includes simulation of the proposed architecture, design of the power electronics, control and magnetic elements and test laboratory tests after building an eight-level prototype.

Findings

The proposed converter has been designed and tested using an experimental prototype. The designed generator is able to operate at 10 kVpp output voltage and 10 kHz, proving the feasibility of the proposed approach.

Originality/value

The proposed converter enables versatile waveform generation, enabling advanced studies in plasma generation. Unlike previous proposals, the proposed converter features bidirectional operation, allowing to test complex reactive loads. Besides, complex waveforms can be generated, allowing testing complex patterns for optimized cold-plasma generation methods. Besides, unlike transformer- or resonant-network-based approaches, the proposed generator features very low output impedance regardless the operating point, exhibiting improved and reliable performance for different operating conditions.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 23 July 2024

Basharat Ullah and Faisal Khan

This paper aims to present an overview of permanent magnet linear flux-switching machines (PMLFSM), field excited LFSM and hybrid excited LFSM (HELFSM) topologies as presented in…

Abstract

Purpose

This paper aims to present an overview of permanent magnet linear flux-switching machines (PMLFSM), field excited LFSM and hybrid excited LFSM (HELFSM) topologies as presented in literature for transportation systems such as high-speed trains and maglev systems.

Design/methodology/approach

The structural designs of different configurations are thoroughly investigated, and their respective advantages and disadvantages are examined. Based on the geometry and excitation sources, a detailed survey is carried out. Specific design and space issues, such as solid and modular structures, structure strength, excitation sources placement, utilization of PM materials, and flux leakage are investigated.

Findings

PMLFSM provide higher power density and efficiency than induction and DC machines because of the superior excitation capability of PMs. The cost of rare-earth PMs has risen sharply in the past few decades because of their frequent use, so the manufacturing cost of PMLFSM is increasing. Owing to the influence of high-energy PMs and magnetic flux concentration, the efficiency and power density are higher in such machines. PM is the only excitation source in PMLFSM and has constant remanence, limiting its applications in a wide speed operation range. Therefore, the field winding is added in the PMLFSM to flexibly regulate the magnetic field, making it a hybrid excited one. The HELFSM possess better flux linkage, high thrust force density and better flux controlling ability, leading to a wide speed range. However, the HELFSM have problems with the crowded mover, as PM, field excited and armature excitation are housed on a short mover. So, for better performance, the area of each excitation component has to compete with each other.

Originality/value

Transportation of goods and people by vehicles is becoming increasingly prevalent. As railways play a significant role in the transportation system and are an integral part of intercity transportation. So, this paper presents an overview of various linear machines that are presented in literature for rail transit systems to promote sustainable urban planning practices.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 21 September 2022

Gopinath Anjinappa and Divakar Bangalore Prabhakar

The fluctuations that occurred between the power requirements have shown a higher range of voltage regulations and frequency. The fluctuations are caused because of substantial…

Abstract

Purpose

The fluctuations that occurred between the power requirements have shown a higher range of voltage regulations and frequency. The fluctuations are caused because of substantial changes in the energy dissipation. The operational efficiency has been reduced when the power grid is enabled with the help of electric vehicles (EVs) that were created by the power resources. The model showed an active load matching for regulating the power and there occurred a harmonic motion in energy. The main purpose of the proposed research is to handle the energy sources for stabilization which has increased the reliability and improved the power efficiency. This study or paper aims to elaborate the security and privacy challenges present in the vehicle 2 grid (V2G) network and their impact with grid resilience.

Design/methodology/approach

The smart framework is proposed which works based on Internet of Things and edge computations that managed to perform an effective V2G operation. Thus, an optimum model for scheduling the charge is designed on each EV to maximize the number of users and selecting the best EV using the proposed ant colony optimization (ACO). At the first, the constructive phase of ACO where the ants in the colony generate the feasible solutions. The constructive phase with local search generates an ACO algorithm that uses the heterogeneous colony of ants and finds effectively the best-known solutions widely to overcome the problem.

Findings

The results obtained by the existing in-circuit serial programming-plug-in electric vehicles model in terms of power usage ranged from 0.94 to 0.96 kWh which was lower when compared to the proposed ACO that showed power usage of 0.995 to 0.939 kWh, respectively, with time. The results showed that the energy aware routed with ACO provided feasible routing solutions for the source node that provided the sensor network at its lifetime and security at the time of authentication.

Originality/value

The proposed ACO is aware of energy routing protocol that has been analyzed and compared with the energy utilization with respect to the sensor area network which uses power resources effectively.

Details

International Journal of Pervasive Computing and Communications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 6 August 2024

Fangyu Ye, Jingyu Dai and Ling Duan

The device, amplifies and sub-regionally transmits the current generated by the body temperature thermoelectric generator through a smart body temperature sensor.

Abstract

Purpose

The device, amplifies and sub-regionally transmits the current generated by the body temperature thermoelectric generator through a smart body temperature sensor.

Design/methodology/approach

The present study designs a wearable smart device regarding the relationship between temperature and emotion.

Findings

Experimental results show that the device can accurately detect changes in human body temperature under hilarious, fearful, soothing and angry emotions, so as to achieve changes in clothing colors, namely blue, red, green and brown.

Originality/value

Different areas of clothing produce controllable and intelligent color, so that adult emotions can be understood through changes in clothing colors, which is conducive to judging their moods and promoting social interaction.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 45