Search results

1 – 10 of 268
Open Access
Article
Publication date: 17 February 2023

Luca Pugi, Giulio Rosano, Riccardo Viviani, Leonardo Cabrucci and Luca Bocciolini

The purpose of this work is to optimize the monitoring of vibrations on dynamometric test rigs for railway brakes. This is a quite demanding application considering the continuous…

Abstract

Purpose

The purpose of this work is to optimize the monitoring of vibrations on dynamometric test rigs for railway brakes. This is a quite demanding application considering the continuous increase of performances of high-speed trains that involve higher testing specifications for brake pads and disks.

Design/methodology/approach

In this work, authors propose a mixed approach in which relatively simple finite element models are used to support the optimization of a diagnostic system that is used to monitor vibration levels and rotor-dynamical behavior of the machine. The model is calibrated with experimental data recorded on the same rig that must be identified and monitored. The whole process is optimized to not interfere with normal operations of the rig, using common inertial sensor and tools and are available as standard instrumentation for this kind of applications. So at the end all the calibration activities can be performed normally without interrupting the activities of the rig introducing additional costs due to system unavailability.

Findings

Proposed approach was able to identify in a very simple and fast way the vibrational behavior of the investigated rig, also giving precious information concerning the anisotropic behavior of supports and their damping. All these data are quite difficult to be found in technical literature because they are quite sensitive to assembly tolerances and to many other factors. Dynamometric test rigs are an important application widely diffused for both road and rail vehicles. Also proposed procedure can be easily extended and generalized to a wide value of machine with horizontal rotors.

Originality/value

Most of the studies in literature are referred to electrical motors or turbomachines operating with relatively slow transients and constant inertial properties. For investigated machines both these conditions are not verified, making the proposed application quite unusual and original with respect to current application. At the same time, there is a wide variety of special machines that are usually marginally covered by standard testing methodologies to which the proposed approach can be successfully extended.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 29 March 2024

Xingwen Wu, Zhenxian Zhang, Wubin Cai, Ningrui Yang, Xuesong Jin, Ping Wang, Zefeng Wen, Maoru Chi, Shuling Liang and Yunhua Huang

This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.

Abstract

Purpose

This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.

Design/methodology/approach

Vibration fatigue of railway bogie arising from the wheel/rail high frequency vibration has become the main concern of railway operators. Previous reviews usually focused on the formation mechanism of wheel/rail high frequency vibration. This paper thus gives a critical review of the vibration fatigue of railway bogie owing to the short-pitch irregularities-induced high frequency vibration, including a brief introduction of short-pitch irregularities, associated high frequency vibration in railway bogie, typical vibration fatigue failure cases of railway bogie and methodologies used for the assessment of vibration fatigue and research gaps.

Findings

The results showed that the resulting excitation frequencies of short-pitch irregularity vary substantially due to different track types and formation mechanisms. The axle box-mounted components are much more vulnerable to vibration fatigue compared with other components. The wheel polygonal wear and rail corrugation-induced high frequency vibration is the main driving force of fatigue failure, and the fatigue crack usually initiates from the defect of the weld seam. Vibration spectrum for attachments of railway bogie defined in the standard underestimates the vibration level arising from the short-pitch irregularities. The current investigations on vibration fatigue mainly focus on the methods to improve the accuracy of fatigue damage assessment, and a systematical design method for vibration fatigue remains a huge gap to improve the survival probability when the rail vehicle is subjected to vibration fatigue.

Originality/value

The research can facilitate the development of a new methodology to improve the fatigue life of railway vehicles when subjected to wheel/rail high frequency vibration.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 12 January 2024

Kai Xu, Ying Xiao and Xudong Cheng

The purpose of this study is to investigate the effects of nanoadditive lubricants on the vibration and noise characteristics of helical gears compared with conventional…

Abstract

Purpose

The purpose of this study is to investigate the effects of nanoadditive lubricants on the vibration and noise characteristics of helical gears compared with conventional lubricants. The experiment aims to analyze whether nanoadditive lubricants can effectively reduce gear vibration and noise under different speeds and loads. It also analyzes the sensitivity of the vibration reduction to load and speed changes. In addition, it compares the axial and radial vibration reduction effects. The goal is to explore the application of nanolubricants for vibration damping and noise reduction in gear transmissions. The results provide a basis for further research on nanolubricant effects under high-speed conditions.

Design/methodology/approach

Helical gears of 20CrMnTi were lubricated with conventional oil and nanoadditive oils. An open helical gearbox with spray lubrication was tested under different speeds (200–500 rpm) and loads (20–100 N·m). Gear noise was measured by a sound level meter. Axial and radial vibrations were detected using an M+P VibRunner system and fast Fourier transform analysis. Vibration spectrums under conventional and nanolubrication were compared. Gear tooth surfaces were observed after testing. The experiment aimed to analyze the noise and vibration reduction effects of nanoadditive lubricants on helical gears and the sensitivity to load and speed.

Findings

The key findings are that nanoadditive lubricants significantly reduce the axial and radial vibrations of helical gears under low-speed conditions compared with conventional lubricants, with a more pronounced effect on axial vibrations. The vibration reduction is more sensitive to rotational speed than load. At the same load and speed, nanolubrication reduces noise by 2%–5% versus conventional lubrication. Nanoparticles change the friction from sliding to rolling and compensate for meshing errors, leading to smoother vibrations. The nanolubricants alter the gear tooth surfaces and optimize the microtopography. The results provide a basis for exploring nanolubricant effects under high speeds.

Originality/value

The originality and value of this work is the experimental analysis of the effects of nanoadditive lubricants on the vibration and noise characteristics of hard tooth surface helical gears, which has rarely been studied before. The comparative results under different speeds and loads provide new insights into the vibration damping capabilities of nanolubricants in gear transmissions. The findings reveal the higher sensitivity to rotational speed versus load and the differences in axial and radial vibration reduction. The exploration of nanolubricant effects on gear tribological performance and surface interactions provides a valuable reference for further research, especially under higher speed conditions closer to real applications.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2023-0220/

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 March 2024

Su Yong and Gong Wu-Qi

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in…

38

Abstract

Purpose

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in failed rocket launches and significant economic losses. Therefore, this paper aims to examine vibrations in transmission pipelines.

Design/methodology/approach

In this study, a three-dimensional high-pressure pipeline model composed of corrugated pipes, multi-section bent pipes, and other auxiliary structures was established. The fluid–solid coupling method was used to analyse vibration characteristics of the pipeline under various external excitations. The simulation results were visualised using MATLAB, and their validity was verified via a thermal test.

Findings

In this study, the vibration mechanism of a complex high-pressure pipeline was examined via a visualisation method. The results showed that the low-frequency vibration of the pipe was caused by fluid self-excited pressure pulsation, whereas the vibration of the engine system caused a high-frequency vibration of the pipeline. The excitation of external pressure pulses did not significantly affect the vibrations of the pipelines. The visualisation results indicated that the severe vibration position of the pipeline thermal test is mainly concentrated between the inlet and outlet and between the two bellows.

Practical implications

The results of this study aid in understanding the causes of abnormal vibrations in rocket engine pipelines.

Originality/value

The causes of different vibration frequencies in the complex pipelines of rocket engines and the propagation characteristics of external vibration excitation were obtained.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 12 March 2024

Shuowen Yan, Pu Xue, Long Liu and M.S. Zahran

This study aims to investigate the design and optimization of landing gear buffers to improve the landing-phase comfort of civil aircraft.

Abstract

Purpose

This study aims to investigate the design and optimization of landing gear buffers to improve the landing-phase comfort of civil aircraft.

Design/methodology/approach

The vibration comfort during the landing and taxiing phases is calculated and evaluated based on the flight-testing data for a type of civil aircraft. The calculation and evaluation are under the guidance of the vibration comfort standard of GB/T13441.1-2007 and related files. The authors establish here a rigid-flexible coupled multibody dynamics finite element model of one full-size aircraft. Furthermore, the authors also implement a dynamic simulation for the landing and taxiing processes. Also, an analysis of how the main parameters of the buffers affect the vibration comfort is presented. Finally, the optimization of the single-chamber and double-chamber buffers in the landing gear is performed considering vibration comfort.

Findings

The double-chamber buffer with optimized parameters in landing gear can improve the vibration comfort of the aircraft during the landing and taxiing phases. Moreover, the comfort index can be increased by 25.6% more than that of a single-chamber type.

Originality/value

To the best of the authors’ knowledge, this study first investigates the evaluation methods and evaluation indexes on the aircraft vibration comfort, then further conducts the optimization of the parameters of landing gear buffer with different structures, so as to improve the comfort of aircraft passengers during landing process. Most of the current studies on aircraft landing gear have focused on the strength and safety of the landing gear, with very limited research on cabin vibration comfort during landing and subsequent taxiing because of the coupling of runway surface unevenness and airframe vibration.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 January 2023

Pravin Hindurao Yadav, Sandeep R. Desai and Dillip Kumar Mohanty

The purpose of this paper is to present investigations on the significant influence of the tube material and fin density on fluid elastic instability and vortex shedding in a…

Abstract

Purpose

The purpose of this paper is to present investigations on the significant influence of the tube material and fin density on fluid elastic instability and vortex shedding in a parallel triangular finned tube array subjected to water cross flow.

Design/methodology/approach

The experiment was conducted on finned tube arrays with a fin height of 6 mm and fin density of 3 fins per inch (fpi) and 9 fpi. A dedicated setup has been developed to examine fluid elastic instability and vortex shedding. Nine parallel triangular tube arrays with a pitch to tube diameter ratio of 1.78 were considered. The plain tube arrays, coarse finned tube arrays and fine finned tube arrays each of steel, copper and aluminium materials were tested. Plain tube arrays were tested to compare the results of the finned tube arrays having an effective tube diameter same as that of the plain tube.

Findings

A significant effect of fin density and tube material with a variable mass damping parameter was observed on the instability threshold. In the parallel triangular finned tube array subjected to water cross flow, a delay in the instability threshold was observed with an increase in fin density. For steel and aluminium tube arrays, the natural frequency is 9.77 Hz and 10.38 Hz, which is close to each other, whereas natural frequency of the copper tubes is 7.40 Hz. The Connors’ stability constant K for steel and aluminium tube arrays is 4.78 and 4.87, respectively, whereas it is 5.76 for copper tube arrays, which increases considerably compared to aluminum and steel tube arrays. The existence of vortex shedding is confirmed by comparing experimental results with Owen’s hypothesis and the Strouhal number and Reynolds number relationship.

Originality/value

This paper’s results contribute to understand the effect of tube materials and fin density on fluid elastic instability threshold of finned tube arrays subjected to water cross flow.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 13 September 2023

Dongdong Lin, Xiaoyu Yan, Binsan Chen, Na She, Yining Ding and Shichao Dong

This study aims to explore the impact of key parameters of brake pads on the dynamic characteristics of the braking system.

Abstract

Purpose

This study aims to explore the impact of key parameters of brake pads on the dynamic characteristics of the braking system.

Design/methodology/approach

This study conducted experimental research based on a friction testing machine with a slider-disc structure. The experiment studied the impact of key parameters of brake pads (rotation speed, pressure, mass, braking radius, etc.) and the braking environment (dry friction, wetness, sand, etc.) on the stability of the braking system. At the same time, a dynamic model of the brake pad braking system was established and compared with experimental results using the mathematical tool of autocorrelation coefficient.

Findings

The key parameters of brake pads have a significant impact on the dynamic characteristics of the braking system; under different conditions of brake pad mass, tribological parameters, brake pad radius and braking environment, the chaotic characteristics of the braking friction force signal show a trend of expansion or contraction, which can be suppressed by adjusting the key parameters of brake pads.

Originality/value

This study can provide a reference for optimizing the braking strategy and reducing noise and vibration in brake pad systems.

Details

Industrial Lubrication and Tribology, vol. 75 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 29 August 2023

Hongyan Zhu, Pengzhen Lv, Xiaochong Wu, Yuansheng Wang, Wei Liu, Huagang Lin and Zhufeng Yue

This paper aims to propose a two-stage vibration isolation system for large airborne equipment to isolate aircraft vibration load.

Abstract

Purpose

This paper aims to propose a two-stage vibration isolation system for large airborne equipment to isolate aircraft vibration load.

Design/methodology/approach

First, the vibration isolation law of the discrete model of large airborne equipment under different damping ratios, stiffness ratios and mass ratios is analyzed, which guides the establishment of a three-dimensional solid model of large airborne equipment. Subsequently, the vibration isolation transfer efficiency is analyzed based on the three-dimensional model of the airborne equipment, and the angular and linear vibration responses of the two-stage vibration isolation system under different frequencies are studied.

Findings

Finally, studies have shown that the steady-state angular vibration at the non-resonant frequency changes little. In contrast, the maximum angular vibration at the resonance peak reaches 0.0033 rad, at least 20 times the response at the non-resonant frequency. The linear vibration at the resonant frequency is at least 2.14 times the response at the non-resonant frequency. Obviously, the amplification factor of linear vibration is less than that of angular vibration, and angular vibration has the most significant effect on the internal vibration of airborne equipment.

Originality/value

The two-stage vibration isolation equipment designed in this paper has a positive guiding significance for the vibration isolation design of large airborne equipment.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 14 November 2023

Qiang Bian, Xiangyun Zhang, Bowen Jiao, Guang Zeng and Chunjiang Zhao

The purpose of this paper is to establish a dynamic analysis model of composite cylindrical roller bearings, investigate the effects of different working conditions on the…

Abstract

Purpose

The purpose of this paper is to establish a dynamic analysis model of composite cylindrical roller bearings, investigate the effects of different working conditions on the kinematic characteristics of composite bearings and compare the differences between them and solid roller bearings.

Design/methodology/approach

This paper establishes a dynamic analysis model for composite cylindrical roller bearings and proves the correctness of the established model by establishing dynamic vibration experiments and contact theory for composite roller bearings. Comparative analysis was conducted on the effects of coupling changes in rotational speed, load, number of rollers and filling ratio on parameters such as bearing static stiffness, contact stress and vibration acceleration.

Findings

The composite roller can enhance the bearing’s operational stability and minimize contact stress, but that a higher filling ratio is going to increase the bearing’s stiffness. The acceleration degree of bearing vibration, the load on the outer raceway nodes and the bearing stability all decrease as inner ring speed rises.

Originality/value

A dynamic calculation model of composite cylindrical roller bearings is established, and the influence of multiparameter coupling changes on bearing vibration and contact is studied, which lays a foundation for the structural improvement of the bearings.

Details

Industrial Lubrication and Tribology, vol. 75 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 7 September 2023

Dileep Bonthu, Bharath H.S., Siddappa I. Bekinal, P. Jeyaraj and Mrityunjay Doddamani

The purpose of this study was to introduce three-dimensional printing (3DP) of functionally graded sandwich foams (FGSFs). This work was continued by predicting the mechanical…

Abstract

Purpose

The purpose of this study was to introduce three-dimensional printing (3DP) of functionally graded sandwich foams (FGSFs). This work was continued by predicting the mechanical buckling and free vibration behavior of 3DP FGSFs using experimental and numerical analyses.

Design/methodology/approach

Initially, hollow glass microballoon-reinforced high-density polyethylene-based polymer composite foams were developed, and these materials were extruded into their respective filaments. These filaments are used as feedstock materials in fused filament fabrication based 3DP for the development of FGSFs. Scanning electron microscopy analysis was performed on the freeze-dried samples to observe filler sustainability. Furthermore, the density, critical buckling load (Pcr), natural frequency (fn) and damping factor of FGSFs were evaluated. The critical buckling load (Pcr) of the FGSFs was estimated using the double-tangent method and modified Budiansky criteria.

Findings

The density of FGSFs decreased with increasing filler percentage. The mechanical buckling load increased with the filler percentage. The natural frequency corresponding to the first mode of the FGSFs exhibited a decreasing trend with an increasing load in the pre-buckling regime and an increase in post-buckled zone, whereas the damping factor exhibited the opposite trend.

Originality/value

The current research work is valuable for the area of 3D printing by developing the functionally graded foam based sandwich beams. Furthermore, it intended to present the buckling behavior of 3D printed FGSFs, variation of frequency and damping factor corresponding to first three modes with increase in load.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Access

Year

Last 6 months (268)

Content type

Article (268)
1 – 10 of 268