Search results

1 – 10 of 16
Article
Publication date: 18 December 2019

Svetoslav Zabunov and Roumen Nedkov

This paper aims to reveal the authors’ conceptual and experimental work on an innovative avionics paradigm for small unmanned aerial vehicles (UAVs).

Abstract

Purpose

This paper aims to reveal the authors’ conceptual and experimental work on an innovative avionics paradigm for small unmanned aerial vehicles (UAVs).

Design/methodology/approach

This novel approach stipulates that, rather than being centralized at the autopilot, control of avionics devices is instead distributed among controllers – spread over the airframe span, in response to avionics devices’ natural location requirements. The latter controllers are herein referred to as edge controllers by the first author.

Findings

The edge controller manifests increased efficiency in a number of functions, some of which are unburdened from the autopilot. The edge controller establishes a new paradigm of structure and design of small UAVs avionics such that any functionality related to the periphery of the airframe is implemented in the controller.

Research limitations/implications

The research encompasses a workbench prototype testing on a breadboard, as the presented idea is a novel concept. Further, another test has been conducted with four controllers mounted on a quadcopter; results from the vertical attitude sustenance are disclosed herein.

Practical implications

The motivation behind developing this paradigm was the need to position certain avionics devices at different locations on the airframe. Due to their inherent functional requirements, most of these devices have hitherto been placed at the periphery of the aircraft construction.

Originality/value

The current paper describes the novel avionics paradigm, compares it to the standard approach and further reveals two experimental setups with testing results.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 15 July 2021

Svetoslav Zabunov, Garo Mardirossian and Katia Strelnitski

The current manuscript aims to propose a novel multirotor design.

Abstract

Purpose

The current manuscript aims to propose a novel multirotor design.

Design/methodology/approach

This paper presents a novel 16-rotor multicopter design named Emerald. The novel design innovations and benefits are disclosed. Comparison to existing 16-rotor designs is carried out. Implementation areas where the novel idea shall yield benefit are discussed. A prototype of the presented design is described.

Findings

The herein proposed 16-rotor design has a number of benefits over existing 16-rotor multicopters. The paper elaborates on those advantages.

Research limitations/implications

The research was limited to prototype testing, as the presented design is a novel concept.

Practical implications

The motivation to research and develop this novel design is implementing the vehicle for stereoscopic photography and reconnaissance. The design is also applicable to carrying payloads while flying indoors.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 18 September 2018

Michal Grzes, Maciej Slowik and Zdzisław Gosiewski

In relation to rapid development of possible applications of unmanned vehicles, new opportunities for their use are emerging. Among the most dynamic, we can distinguish package…

Abstract

Purpose

In relation to rapid development of possible applications of unmanned vehicles, new opportunities for their use are emerging. Among the most dynamic, we can distinguish package shipments, rescue and military applications, autonomous flights and unattended transportation. However, most of the UAV solutions have limitations related to their power supplies and the field of operation. Some of these restrictions can be overcome by implementing the cooperation between unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs). The purpose of this paper is to explore the problem of sensor fusion for autonomous landing of a UAV on the UGV by comparing the performance of precision landing algorithms using different sensor fusions to have precise and reliable information about the position and velocity.

Design/methodology/approach

The difficulties in this scenario, among others, are different coordination systems and necessity for sensor data from air and ground. The most suitable solution seems to be the use of widely available Global Navigational Satellite System (GNSS) receivers. Unfortunately, the position measurements obtained from cheap receivers are encumbered with errors when desiring precision. The different approaches are based on the usage of sensor fusion of Inertial Navigation System and image processing. However most of these systems are very vulnerable to lightning.

Findings

In this paper, methods based on an exchange of telemetry data and sensor fusion of GNSS, infrared markers detection and others are used. Different methods are compared.

Originality/value

The subject of sensor fusion and high-precision measurements in reference to the autonomous vehicle cooperation is very important because of the increasing popularity of these vehicles. The proposed solution is efficient to perform autonomous landing of UAV on the UGV.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 13 December 2023

Ying-Jie Guan and Yong-Ping Li

To solve the shortcomings of existed search and rescue drones, search and rescue the trapped people trapped in earthquake ruins, underwater and avalanches quickly and accurately…

Abstract

Purpose

To solve the shortcomings of existed search and rescue drones, search and rescue the trapped people trapped in earthquake ruins, underwater and avalanches quickly and accurately, this paper aims to propose a four-axis eight-rotor rescue unmanned aerial vehicle (UAV) which can carry a radar life detector. As the design of propeller is the key to the design of UAV, this paper mainly designs the propeller of the UAV at the present stage.

Design/methodology/approach

Based on the actual working conditions of UAVs, this paper preliminarily estimated the load of UAVs and the diameters of propellers and designed the main parameters of propellers according to the leaf element theory and momentum theory. Based on the low Reynolds number airfoil, this paper selected the airfoil with high lift drag ratio from the commonly used low Reynolds number airfoils. The chord length and twist angle of propeller blades were calculated according to the Wilson method and the maximum wind energy utilization coefficient and were optimized by the Asymptotic exponential function. The aerodynamic characteristics of the designed single propeller and coaxial propeller under different installation pitch angles and different installation distances were analyzed.

Findings

The results showed that the design of coaxial twin propellers can increase the load capacity by about 1.5 times without increasing the propeller diameter. When the installation distance between the two propellers was 8 cm and the tilt angle was 15° counterclockwise, the aerodynamic characteristics of the coaxial propeller were optimal.

Originality/value

The novelty of this work came from the conceptual design of the new rescue UAV and its numerical optimization using the Wilson method combined with the maximum wind energy utilization factor and the exponential function. The aerodynamic characteristics of the common shaft propeller were analyzed under different mounting angles and different mounting distances.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 16 November 2021

Eduard Bertran, Paula Tercero and Alex Sànchez-Cerdà

This paper aims to overcome the main obstacle to compare the merits of the different control strategies for fixed-wing unmanned aerial vehicles (UAVs) to assess autopilot…

Abstract

Purpose

This paper aims to overcome the main obstacle to compare the merits of the different control strategies for fixed-wing unmanned aerial vehicles (UAVs) to assess autopilot performances. Up to now, the published studies of control strategies have been carried out over disperse models, thus being complicated, if not impossible, to compare the merits of each proposal. The authors present a worked benchmark for autopilots studies, consisting of generalized models obtained by merging UAVs’ parameters gathered from selected literature (journals) with other parameters directly obtained by the authors to include some relevant UAVs whose models are not provided in the literature. To obtain them it has been used a dedicated software (from U.S. Air Force).

Design/methodology/approach

The proposed models have been constructed by averaging both the main aircraft defining parameters (model derivatives) and pole-zero locations of longitudinal transfer functions. The suitability of the used methodologies has been checked from their capability to fit the short period and the phugoid modes. Previous analytical model arrangement has been required to match a uniform set of parameters, as the inner state variables are neither the same along the different published models nor between the additional models the authors have here contributed. Besides, moving models between the space state representation and transfer function is not just a simple averaging process, as neither the parameters nor the model orders are the same in the different published works. So, the junction of the models to a common set of parameters requires some residual’s computation and transient responses assessment (even Fourier analysis has been included to preserve the dominance of the phugoid) to keep the main properties of the models. The least mean squares technique has been used to have better fittings between SISO model parameters with state–space ones.

Findings

Both the SISO (Laplace) and state-space models for the longitudinal transfer function of an “averaged” fixed-wing UAV are proposed.

Research limitations/implications

More complicated situations, such as strong wind conditions, need another kind of models, usually based on finite element method simulation. These particular models apply fluid dynamics to study aerostructural aircraft aspects, such as flutter and other aerolastic aspects, the behavior under icing conditions or other distributed parameter problems. Even some models aim to control other aspects than the autopilot, such as the trajectory prediction. However, these models are not the most suitable for the basic UAV autopilot design (early design), so they are outside the objective of this paper. Obviously, the here-considered UAVs are not all the existing ones, but the number is large enough to consider the result as a reliable and realistic representation. The presented study may be seen as a stepping stone, allowing to include other UAVs in future works.

Practical implications

The proposed models can be used as benchmarks, or as a previous step to produce improved benchmarks, in order to have a common and realistic scenario the compare the benefits of the different control actions in UAV autopilots continuously presented in the published research.

Originality/value

A work with the scope of the presented one, merging model parameters from literature with other (often referred in papers and websites) whose parameters have been obtained by the authors has been never published.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 6 January 2021

Navya Thirumaleshwar Hegde, V. I. George, C. Gurudas Nayak and Aldrin Claytus Vaz

This paper aims to provide a mathematical modeling and design of H-infinity controller for an autonomous vertical take-off and landing (VTOL) Quad Tiltrotor hybrid unmanned aerial…

Abstract

Purpose

This paper aims to provide a mathematical modeling and design of H-infinity controller for an autonomous vertical take-off and landing (VTOL) Quad Tiltrotor hybrid unmanned aerial vehicles (UAVs). The variation in the aerodynamics and model dynamics of these aerial vehicles due to its tilting rotors are the key issues and challenges, which attracts the attention of many researchers. They carry parametric uncertainties (such as non-linear friction force, backlash, etc.), which drives the designed controller based on the nominal model to instability or performance degradation. The controller needs to take these factors into consideration and still give good stability and performance. Hence, a robust H-infinity controller is proposed that can handle these uncertainties.

Design/methodology/approach

A unique VTOL Quad Tiltrotor hybrid UAV, which operates in three flight modes, is mathematically modeled using Newton–Euler equations of motion. The contribution of the model is its ability to combine high-speed level flight, VTOL and transition between these two phases. The transition involves the tilting of the proprotors from 90° to 0° and vice-versa in 15° intervals. A robust H-infinity control strategy is proposed, evaluated and analyzed through simulation to control the flight dynamics for different modes of operation.

Findings

The main contribution of this research is the mathematical modeling of three flight modes (vertical takeoff–forward, transition–cruise-back, transition-vertical landing) of operation by controlling the revolutions per minute and tilt angles, which are independent of each other. An autonomous flight control system using a robust H-infinity controller to stabilize the mode of transition is designed for the Quad Tiltrotor UAV in the presence of uncertainties, noise and disturbances using MATLAB/SIMULINK. This paper focused on improving the disturbance rejection properties of the proposed UAV by designing a robust H-infinity controller for position and orientation trajectory regulation in the presence of uncertainty. The simulation results show that the Tiltrotor achieves transition successfully with disturbances, noise and uncertainties being present.

Originality/value

A novel VTOL Quad Tiltrotor UAV mathematical model is developed with a special tilting rotor mechanism, which combines both aircraft and helicopter flight modes with the transition taking place in between phases using robust H-infinity controller for attitude, altitude and trajectory regulation in the presence of uncertainty.

Details

International Journal of Intelligent Unmanned Systems, vol. 9 no. 3
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 16 July 2019

Maryam Safi, Joon Chung and Pratik Pradhan

The purpose of this paper is to assess and determine the potential of augmented reality (AR) in aerospace applications through a survey of published sources.

1935

Abstract

Purpose

The purpose of this paper is to assess and determine the potential of augmented reality (AR) in aerospace applications through a survey of published sources.

Design/methodology/approach

This paper reviews a database of AR applications developed for the aerospace sector in academic research or industrial training and operations. The review process begins with the classification of these applications, followed by a brief discussion on the implications of AR technology in each category.

Findings

AR is abundantly applied in engineering, navigation, training and simulation. There is potential for application in in-flight entertainment and communication, crew support and airport operations monitoring.

Originality/value

This paper is a general review introducing existing and potential AR applications in various fields of the aerospace industry. Unlike previous publications, this article summarizes existing and emerging applications to familiarize readers with AR use in all of aerospace. The paper outlines example projects and creates a single comprehensive reference of AR advancements and its use in the aerospace industry. The paper provides individuals with a quick guide to available and emerging technology.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 17 August 2021

Hasan Saribas and Sinem Kahvecioglu

This study aims to compare the performance of the conventional and fractional order proportional-integral-derivative (PID and FOPID) controllers tuned with a particle swarm…

275

Abstract

Purpose

This study aims to compare the performance of the conventional and fractional order proportional-integral-derivative (PID and FOPID) controllers tuned with a particle swarm optimization (PSO) and genetic algorithm (GA) for quadrotor control.

Design/methodology/approach

In this study, the gains of the controllers were tuned using PSO and GA, which are included in the heuristic optimization methods. The tuning processes of the controller’s gains were formulated as optimization problems. While generating the objective functions (cost functions), four different decision criteria were considered separately: integrated summation error (ISE), integrated absolute error, integrated time absolute error and integrated time summation error (ITSE).

Findings

According to the simulation results and comparison tables that were created, FOPID controllers tuned with PSO performed better performances than PID controllers. In addition, the ITSE criterion returned better results in control of all axes except for altitude control when compared to the other cost functions. In the control of altitude with the PID controller, the ISE criterion showed better performance.

Originality/value

While a conventional PID controller has three parameters (Kp, Ki, Kd) that need to be tuned, FOPID controllers have two additional parameters (µ). The inclusion of these two extra parameters means more flexibility in the controller design but much more complexity for parameter tuning. This study reveals the potential and effectiveness of PSO and GA in tuning the controller despite the increased number of parameters and complexity.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 29 July 2024

Bahadır Cinoğlu

The purpose of this study is to determine propeller damage based on acoustic recordings taken from unmanned aerial vehicle (UAV) propellers operated at different thrust conditions…

Abstract

Purpose

The purpose of this study is to determine propeller damage based on acoustic recordings taken from unmanned aerial vehicle (UAV) propellers operated at different thrust conditions on a test bench. Propeller damage is especially critical for fixed-wing UAVs to sustain a safe flight. The acoustic characteristics of the propeller vary with different propeller damages.

Design/methodology/approach

For the research, feature extraction methods and machine learning techniques were used during damage detection from propeller acoustic data. First of all, sound recordings were obtained by operating five different damaged propellers and undamaged propellers under three different thrusts. Afterwards, the harmonic-to-noise ratio (HNR) feature extraction technique was applied to these audio recordings. Finally, model training and validation were performed by applying the Gaussian Naive Bayes machine learning technique to create a diagnostic approach.

Findings

A high recall value of 96.19% was obtained in the performance results of the model trained according to damaged and undamaged propeller acoustic data. The precision value was 73.92% as moderate. The overall accuracy value of the model, which can be considered as general performance, was obtained as 81.24%. The F1 score has been found as 83.76% which provides a balanced measure of the model’s precision and recall values.

Practical implications

This study include provides solid method to diagnose UAV propeller damage using acoustic data obtain from the microphone and allows identification of differently damaged propellers. Using that, the risk of in-flight failures can be reduced and maintenance costs can be lowered with addressing the occurred problems with UAV propeller before they worsen.

Originality/value

This study introduces a novel method to diagnose damaged UAV propellers using the HNR feature extraction technique and Gaussian Naive Bayes classification method. The study is a pioneer in the use of HNR and the Gaussian Naive Bayes and demonstrates its effectiveness in augmenting UAV safety by means of propeller damages. Furthermore, this approach contributes to UAV operational reliability by bridging the acoustic signal processing and machine learning.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 10 August 2021

Aziz Kaba

The purpose of this paper is to develop, extend and propose an improved proportional integral derivative (PID) rate control of a quadrotor unmanned aerial vehicle based on a…

215

Abstract

Purpose

The purpose of this paper is to develop, extend and propose an improved proportional integral derivative (PID) rate control of a quadrotor unmanned aerial vehicle based on a convexity-based surrogated firefly algorithm.

Design/methodology/approach

An improved PID controller structure is proposed for the rate dynamics of the quadrotor. Optimality of the controller is ensured by a recent, simple yet efficient firefly optimization method. The hybrid structure is further enhanced with a convexity-based surrogated model function.

Findings

Monte Carlo, transient response, error metrics and histogram distribution analyzes are conducted to show the performance of the proposed controller. The performance of the proposed method is evaluated under various convex combination values to further investigate the effect of the proposed surrogated model. According to the results, the proposed method is capable of controlling the rate quadrotor dynamics with the steady-state error of 0.0023 (rad/s) for P, −0.0024 (rad/s) for Q and 0 (rad/s) for the R state, respectively. Also, the least mean objective value is achieved at = 0 value of convexity in Monte Carlo trials.

Originality/value

The originality of this paper is to propose an improved PID rate controller with a convexity-based surrogated firefly algorithm.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 16