Search results

1 – 10 of 18
Article
Publication date: 15 July 2021

Svetoslav Zabunov, Garo Mardirossian and Katia Strelnitski

The current manuscript aims to propose a novel multirotor design.

Abstract

Purpose

The current manuscript aims to propose a novel multirotor design.

Design/methodology/approach

This paper presents a novel 16-rotor multicopter design named Emerald. The novel design innovations and benefits are disclosed. Comparison to existing 16-rotor designs is carried out. Implementation areas where the novel idea shall yield benefit are discussed. A prototype of the presented design is described.

Findings

The herein proposed 16-rotor design has a number of benefits over existing 16-rotor multicopters. The paper elaborates on those advantages.

Research limitations/implications

The research was limited to prototype testing, as the presented design is a novel concept.

Practical implications

The motivation to research and develop this novel design is implementing the vehicle for stereoscopic photography and reconnaissance. The design is also applicable to carrying payloads while flying indoors.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 4 July 2016

Pierpaolo Pergola and Vittorio Cipolla

The purpose of this paper is to deal with the study of an innovative unmanned mission to Mars, which is aimed at acquiring a great amount of detailed data related to both Mars’…

Abstract

Purpose

The purpose of this paper is to deal with the study of an innovative unmanned mission to Mars, which is aimed at acquiring a great amount of detailed data related to both Mars’ atmosphere and surface.

Design/methodology/approach

The Mars surface exploration is conceived by means of a fleet of drones flying among a set of reference points (acting also as entry capsules and charging stations) on the surface. The three key enabling technologies of the proposed mission are the use of small satellites (used in constellation with a minimum of three), the use of electric propulsion systems for the interplanetary transfer (to reduce the propellant mass fraction) and lightweight, efficient, drones designed to operate in the harsh Mars environment and with its tiny atmosphere.

Findings

The low-thrust Earth-Mars transfer is designed by means of an optimization approach resulting in a duration of slightly more than 27 months with a propellant amount of about 125 kg, which is compatible with the choice of considering a 500 kg-class spacecraft. Four candidate drone configurations have been selected as the result of a sensitivity analysis. Flight endurance, weight and drone size have been considered as the driving design parameters for the selection of the final configuration, which is characterized by six rotors, a total mass of about 6.5 kg and a flight endurance of 28 minutes. In the mission scenario proposed, the drone is assumed to be delivered on the Mars surface by means of a passive entry capsule, which acts also as a docking station and charging base. Such a capsule has been sized both in terms of mass (68 kg) and power (80 W), showing to be compatible with 500 kg-class spacecraft.

Research limitations/implications

As a general conclusion, the study shows the mission concept feasibility.

Practical implications

The concept would return incomparable scientific data and can be also be potentially implemented with a relatively low budget exploiting of the shelf components to the larger extent, small identical spacecraft buses and modular low-cost drones.

Originality/value

The innovative mission architecture proposed in this study aims at providing a complete coverage of the surface and lowest atmospheric layers. The main innovation factor of the proposed mission consists in the adoption of small multi-copter UAVs, also called “drones,” as remote-sensing platforms.

Details

International Journal of Intelligent Unmanned Systems, vol. 4 no. 3
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 2 January 2018

N. Aswini, E. Krishna Kumar and S.V. Uma

The purpose of this paper is to provide an overview of unmanned aerial vehicle (UAV) developments, types, the major functional components of UAV, challenges, and trends of UAVs…

1070

Abstract

Purpose

The purpose of this paper is to provide an overview of unmanned aerial vehicle (UAV) developments, types, the major functional components of UAV, challenges, and trends of UAVs, and among the various challenges, the authors are concentrating more on obstacle sensing methods. This also highlights the scope of on-board vision-based obstacle sensing for miniature UAVs.

Design/methodology/approach

The paper initially discusses the basic functional elements of UAV, then considers the different challenges faced by UAV designers. The authors have narrowed down the study on obstacle detection and sensing methods for autonomous operation.

Findings

Among the various existing obstacle sensing techniques, on-board vision-based obstacle detection has better scope in the future requirements of miniature UAVs to make it completely autonomous.

Originality/value

The paper gives original review points by doing a thorough literature survey on various obstacle sensing techniques used for UAVs.

Details

International Journal of Intelligent Unmanned Systems, vol. 6 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 18 May 2015

Oualid Araar, Nabil Aouf and Jose Luis Vallejo Dietz

This paper aims to present a new vision-based approach for both the identification and the estimation of the relative distance between the unmanned aerial vehicle (UAV) and power…

Abstract

Purpose

This paper aims to present a new vision-based approach for both the identification and the estimation of the relative distance between the unmanned aerial vehicle (UAV) and power pylon. Autonomous power line inspection using small UAVs, has been the focus of many research works over the past couple of decades. Automatic detection of power pylons is a primary requirement to achieve such autonomous systems. It is still a challenging task due to the complex geometry and cluttered background of these structures.

Design/methodology/approach

The identification solution proposed, avoids the complexity of classic object recognition techniques. Instead of searching the whole image for the pylon template, low-level geometric priors with robust colour attributes are combined to remove the pylon background. The depth estimation, on the other hand, is based on a new concept which exploits the ego-motion of the inspection UAV to estimate its distance from the pylon using just a monocular camera.

Findings

An algorithm is tested on a quadrotor UAV, using different kinds of metallic power pylons. Both simulation and real-world experiments, conducted in different backgrounds and illumination conditions, show very promising results.

Research limitations/implications

In the real tests carried out, the Inertial Navigation System (INS) of the vehicle was used to estimate its ego-motion. A more reliable solution should be considered for longer distances, by either fusing INS and global positioning system data or using visual navigation techniques such as visual odometry.

Originality/value

A simple yet efficient solution is proposed that allows the UAV to reliably identify the pylon, with still a low processing cost. Considering a monocular solution is a major advantage, given the limited payload and processing power of such small vehicles.

Details

Industrial Robot: An International Journal, vol. 42 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 August 1974

Aeronautical & General Instruments Ltd, will exhibit their R 128 recording cameras, designed to photograph the information displayed on the cathode ray tube of an aircraft's…

Abstract

Aeronautical & General Instruments Ltd, will exhibit their R 128 recording cameras, designed to photograph the information displayed on the cathode ray tube of an aircraft's reconnaissance radar.

Details

Aircraft Engineering and Aerospace Technology, vol. 46 no. 8
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 19 October 2015

Robert Bogue

The purpose of this article is to illustrate how sensors impart perceptive capabilities to robots. This is the second part of a two-part article. This second part considers…

Abstract

Purpose

The purpose of this article is to illustrate how sensors impart perceptive capabilities to robots. This is the second part of a two-part article. This second part considers positional awareness and sensing in the external environment, notably but not exclusively by autonomous, mobile robots.

Design/methodology/approach

Following a short introduction, this article first discusses positional sensing and navigation by mobile robots, including self-driving cars, automated guided vehicles, unmanned aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs). It then considers sensing with UAVs and AUVs, and finally discusses robots for hazard detection. Brief concluding comments are drawn.

Findings

This shows that sensors based on a multitude of techniques confer navigational capabilities to mobile robots, including LIDARs, radar, sonar, imaging and inertial sensing devices. UAVs, AUVs and mobile terrestrial robots can be equipped with all manner of sensors to create detailed terrestrial and underwater maps, monitor air and water quality, locate pollution and detect hazards. While existing sensors are used widely, many new devices are now being developed to meet specific requirements and to comply with size, weight and cost restraints.

Originality/value

The use of mobile robots is growing rapidly, and this article provides a timely account of how sensors confer them with positional awareness and allow them to act as mobile sensing platforms.

Details

Industrial Robot: An International Journal, vol. 42 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Content available
Article
Publication date: 9 June 2023

Wahib Saif and Adel Alshibani

This paper aims to present a highly accessible and affordable tracking model for earthmoving operations in an attempt to overcome some of the limitations of current tracking…

Abstract

Purpose

This paper aims to present a highly accessible and affordable tracking model for earthmoving operations in an attempt to overcome some of the limitations of current tracking models.

Design/methodology/approach

The proposed methodology involves four main processes: acquiring onsite terrestrial images, processing the images into 3D scaled cloud data, extracting volumetric measurements and crew productivity estimations from multiple point clouds using Delaunay triangulation and conducting earned value/schedule analysis and forecasting the remaining scope of work based on the estimated performance. For validation, the tracking model was compared with an observation-based tracking approach for a backfilling site. It was also used for tracking a coarse base aggregate inventory for a road construction project.

Findings

The presented model has proved to be a practical and accurate tracking approach that algorithmically estimates and forecasts all performance parameters from the captured data.

Originality/value

The proposed model is unique in extracting accurate volumetric measurements directly from multiple point clouds in a developed code using Delaunay triangulation instead of extracting them from textured models in modelling software which is neither automated nor time-effective. Furthermore, the presented model uses a self-calibration approach aiming to eliminate the pre-calibration procedure required before image capturing for each camera intended to be used. Thus, any worker onsite can directly capture the required images with an easily accessible camera (e.g. handheld camera or a smartphone) and can be sent to any processing device via e-mail, cloud-based storage or any communication application (e.g. WhatsApp).

Article
Publication date: 1 April 2014

Annette Mossel, Michael Leichtfried, Christoph Kaltenriner and Hannes Kaufmann

The authors present a low-cost unmanned aerial vehicle (UAV) for autonomous flight and navigation in GPS-denied environments using an off-the-shelf smartphone as its core on-board…

Abstract

Purpose

The authors present a low-cost unmanned aerial vehicle (UAV) for autonomous flight and navigation in GPS-denied environments using an off-the-shelf smartphone as its core on-board processing unit. Thereby, the approach is independent from additional ground hardware and the UAV core unit can be easily replaced with more powerful hardware that simplifies setup updates as well as maintenance. The paper aims to discuss these issues.

Design/methodology/approach

The UAV is able to map, locate and navigate in an unknown indoor environment fusing vision-based tracking with inertial and attitude measurements. The authors choose an algorithmic approach for mapping and localization that does not require GPS coverage of the target area; therefore autonomous indoor navigation is made possible.

Findings

The authors demonstrate the UAVs capabilities of mapping, localization and navigation in an unknown 2D marker environment. The promising results enable future research on 3D self-localization and dense mapping using mobile hardware as the only on-board processing unit.

Research limitations/implications

The proposed autonomous flight processing pipeline robustly tracks and maps planar markers that need to be distributed throughout the tracking volume.

Practical implications

Due to the cost-effective platform and the flexibility of the software architecture, the approach can play an important role in areas with poor infrastructure (e.g. developing countries) to autonomously perform tasks for search and rescue, inspection and measurements.

Originality/value

The authors provide a low-cost off-the-shelf flight platform that only requires a commercially available mobile device as core processing unit for autonomous flight in GPS-denied areas.

Details

International Journal of Pervasive Computing and Communications, vol. 10 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 20 June 2016

Robert Bogue

This paper aims to provide an overview of robots presently in use by the military and an insight into some that are under development.

Abstract

Purpose

This paper aims to provide an overview of robots presently in use by the military and an insight into some that are under development.

Design/methodology/approach

Following a short introduction, this paper first considers existing applications of robots in the military field, including details of Russian weaponised ground robots. It then highlights a range of military robot developments and concludes with a brief discussion.

Findings

Drones (unmanned aerial vehicles) and small unmanned ground vehicles (UGVs) are among the most widely used robots by the military. Russia is developing a growing armoury of heavily weaponised UGVs, some of which were recently deployed in Syria. Some topics of development include humanoid robots, powered exoskeletons, load-carrying robots, micro-air vehicles and autonomous land vehicles. Robots will play an ever-growing role in military actions, and while some developments offer longer-term prospects, others are expected to be deployed in the near future.

Originality/value

Robots are playing an increasingly important role in military conflicts, and this provides details of present-day and anticipated future uses of robots by the military.

Details

Industrial Robot: An International Journal, vol. 43 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 9 November 2022

Robert Bogue

This paper aims to trace the technological and commercial developments in robotics over the last 50 years, from 1973, the year in which this journal was founded, to the present…

Abstract

Purpose

This paper aims to trace the technological and commercial developments in robotics over the last 50 years, from 1973, the year in which this journal was founded, to the present day.

Design/methodology/approach

Following an introduction, this identifies key robot developments on a decade-by-decade basis and considers research, products, applications and corporate activity and also highlights many of the enabling technologies. Brief conclusions are draw.

Findings

The robot industry has changed beyond all recognition during the last half century. Enabled by developments in microelectronics, computing, sensors, imaging technologies, data communication and power sources, today robots satisfy a multitude of applications and play a role in almost every sphere of human activity.

Originality/value

This provides a detailed review of robotic developments during the last 50 years.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 18