Search results

1 – 10 of over 5000
Article
Publication date: 2 August 2023

Shaoyi Liu, Song Xue, Peiyuan Lian, Jianlun Huang, Zhihai Wang, Lihao Ping and Congsi Wang

The conventional design method relies on a priori knowledge, which limits the rapid and efficient development of electronic packaging structures. The purpose of this study is to…

Abstract

Purpose

The conventional design method relies on a priori knowledge, which limits the rapid and efficient development of electronic packaging structures. The purpose of this study is to propose a hybrid method of data-driven inverse design, which couples adaptive surrogate model technology with optimization algorithm to to enable an efficient and accurate inverse design of electronic packaging structures.

Design/methodology/approach

The multisurrogate accumulative local error-based ensemble forward prediction model is proposed to predict the performance properties of the packaging structure. As the forward prediction model is adaptive, it can identify respond to sensitive regions of design space and sample more design points in those regions, getting the trade-off between accuracy and computation resources. In addition, the forward prediction model uses the average ensemble method to mitigate the accuracy degradation caused by poor individual surrogate performance. The Particle Swarm Optimization algorithm is then coupled with the forward prediction model for the inverse design of the electronic packaging structure.

Findings

Benchmark testing demonstrated the superior approximate performance of the proposed ensemble model. Two engineering cases have shown that using the proposed method for inverse design has significant computational savings while ensuring design accuracy. In addition, the proposed method is capable of outputting multiple structure parameters according to the expected performance and can design the packaging structure based on its extreme performance.

Originality/value

Because of its data-driven nature, the inverse design method proposed also has potential applications in other scientific fields related to optimization and inverse design.

Details

Soldering & Surface Mount Technology, vol. 35 no. 5
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 5 October 2015

Zheng Jiang, Haobo Qiu, Ming Zhao, Shizhan Zhang and Liang Gao

In multidisciplinary design optimization (MDO), if the relationships between design variables and some output parameters, which are important performance constraints, are complex…

Abstract

Purpose

In multidisciplinary design optimization (MDO), if the relationships between design variables and some output parameters, which are important performance constraints, are complex implicit problems, plenty of time should be spent on computationally expensive simulations to identify whether the implicit constraints are satisfied with the given design variables during the optimization iteration process. The purpose of this paper is to propose an ensemble of surrogates-based analytical target cascading (ESATC) method to tackle such MDO engineering design problems with reduced computational cost and high optimization accuracy.

Design/methodology/approach

Different surrogate models are constructed based on the sample point sets obtained by Latin hypercube sampling (LHS) method. Then, according to the error metric of each surrogate model, the repeated ensemble of surrogates is constructed to approximate the implicit objective functions and constraints. Under the framework of analytical target cascading (ATC), the MDO problem is decomposed into several optimization subproblems and the function of analysis module of each subproblem is simulated by repeated ensemble of surrogates, working together to find the optimum solution.

Findings

The proposed method shows better modeling accuracy and robustness than other individual surrogate model-based ATC method. A numerical benchmark problem and an industrial case study of the structural design of a super heavy vertical lathe machine tool are utilized to demonstrate the accuracy and efficiency of the proposed method.

Originality/value

This paper integrates a repeated ensemble method with ATC strategy to construct the ESATC framework which is an effective method to solve MDO problems with implicit constraints and black-box objectives.

Article
Publication date: 13 April 2022

Xiongxiong You, Mengya Zhang and Zhanwen Niu

Surrogate-assisted evolutionary algorithms (SAEAs) are the most popular algorithms used to solve design optimization problems of expensive and complex engineering systems…

Abstract

Purpose

Surrogate-assisted evolutionary algorithms (SAEAs) are the most popular algorithms used to solve design optimization problems of expensive and complex engineering systems. However, it is difficult for fixed surrogate models to maintain their accuracy and efficiency in the face of different issues. Therefore, the selection of an appropriate surrogate model remains a significant challenge. This paper aims to propose a dynamic adaptive hybrid surrogate-assisted particle swarm optimization algorithm (AHSM-PSO) to address this issue.

Design/methodology/approach

A dynamic adaptive hybrid selection method (AHSM) is proposed. This method can identify multiple ensemble models formed by integrating different numbers of excellent individual surrogate models. Then, according to the minimum root-mean-square error, the best suitable surrogate model is dynamically selected in each generation and is used to assist PSO.

Findings

Experimental studies on commonly used benchmark problems, and two real-world design optimization problems demonstrate that, compared with existing algorithms, the proposed algorithm achieves better performance.

Originality/value

The main contribution of this work is the proposal of a dynamic adaptive hybrid selection method (AHSM). This method uses the advantages of different surrogate models and eliminates the shortcomings of experience selection. Furthermore, the empirical results of the comparison of the proposed algorithm (AHSM-PSO) with existing algorithms on commonly used benchmark problems, and two real-world design optimization problems demonstrate its competitiveness.

Article
Publication date: 15 August 2023

Chunping Zhou, Zheng Wei, Huajin Lei, Fangyun Ma and Wei Li

Surrogate models are extensively used to substitute real models which are expensive to evaluate in the time-dependent reliability analysis. Normally, different surrogate models

Abstract

Purpose

Surrogate models are extensively used to substitute real models which are expensive to evaluate in the time-dependent reliability analysis. Normally, different surrogate models have different scopes of application. However, information is often insufficient for analysts to select the most appropriate surrogate model for a specific application. Thus, the result precited by individual surrogate model tends to be suboptimal or even inaccurate. Ensemble model can effectively deal with the above concern. This work aims to study the application of ensemble model for reliability analysis of time-independent problems.

Design/methodology/approach

In this work, a method of reliability analysis for time-dependent problems based on ensemble learning of surrogate models is developed. The ensemble of surrogate models includes Kriging, radial basis function, and support vector machine. The prediction is approximated by the weighted average model. The ensemble learning of surrogate models is updated by finding and adding the sample points with large prediction errors throughout the entire procedure.

Findings

The effectiveness of the proposed method is verified by several examples. The results show that the ensemble of surrogate models can effectively propagate the uncertainty of time-varying problems, and evaluate the reliability with high prediction accuracy and computational efficiency.

Originality/value

This work proposes an adaptive learning framework for the uncertainty propagation of time-dependent problems based on the ensemble of surrogate models. Compared with individual surrogate models, the ensemble model not only saves the effort of selecting an appropriate surrogate model especially when the knowledge of unknown problem is lacking, but also improves the prediction accuracy and computational efficiency.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 11 October 2011

Silvana Maria B. Afonso, Bernardo Horowitz and Marcelo Ferreira da Silva

The purpose of this paper is to propose physically based varying fidelity surrogates to be used in structural design optimization of space trusses. The main aim is to demonstrate…

Abstract

Purpose

The purpose of this paper is to propose physically based varying fidelity surrogates to be used in structural design optimization of space trusses. The main aim is to demonstrate its efficiency in reducing the number of high fidelity (HF) runs in the optimization process.

Design/methodology/approach

In this work, surrogate models are built for space truss structures. This study uses functional as well as physical surrogates. In the latter, a grid analogy of the space truss is used thereby reducing drastically the analysis cost. Global and local approaches are considered. The latter will require a globalization scheme (sequential approximate optimization (SAO)) to ensure convergence.

Findings

Physically based surrogates were proposed. Classical techniques, namely Taylor series and kriging, are also implemented for comparison purposes. A parameter study in kriging is necessary to select the best kriging model to be used as surrogate. A test case was considered for optimization and several surrogates were built. The CPU time is reduced when compared with the HF solution, for all surrogate‐based optimization performed. The best result was achieved combining the proposed physical model with additive corrections in a SAO strategy in which C1 continuity was imposed at each trust region center. Some guidance for other engineering applications was given.

Originality/value

This is the first time that physical‐based surrogates for optimum design of space truss systems are used in the SAO framework. Physical surrogates typically exhibit better generalization properties than other surrogates forms, produce faster solutions, and do not suffer from dimensionality curse when used in approximate optimization strategies.

Details

Engineering Computations, vol. 28 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 July 2014

Wim Lammen, Philipp Kupijai, Daniel Kickenweitz and Timo Laudan

– This paper aims to set up and assess a new method to collaboratively mature the requirements for engine development in a more efficient way during the preliminary design phase.

Abstract

Purpose

This paper aims to set up and assess a new method to collaboratively mature the requirements for engine development in a more efficient way during the preliminary design phase.

Design/methodology/approach

A collaborative process has been set up in which detailed information on the behaviour of designed engines has been integrated into the aircraft preliminary sizing process by means of surrogate modelling.

Findings

The engine surrogate model has been invoked as a black box from within the aircraft preliminary design optimisation loops. The surrogate model reduces the uncertainty of coarse-grain formulas and may result in more competitive aircraft and engine designs. The surrogate model has been integrated in a collaborative cross-organisational workflow between aircraft manufacturer, engine manufacturer and simulation service providers to prepare for its deployment in industrial preliminary design processes.

Practical implications

The new collaborative way of working between aircraft manufacturer, engine manufacturer and simulation service providers could contribute to remove time consuming rework cycles in early and later design stages within delivering the optimal aircraft-engine combination.

Originality/value

The assessed process, based on an innovative collaboration standard, provides the opportunity to introduce useful design iterations with much more enriched information than in the classical design process as performed today. Specifically, the application of an engine surrogate model is advantageous, as it allows for extensive trade-off studies on aircraft level because of the low computational effort, while the intellectual property of the engine manufacturer (the engine preliminary design process) is respected and kept in-house.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 23 May 2023

Shiyuan Yang, Debiao Meng, Hongtao Wang, Zhipeng Chen and Bing Xu

This study conducts a comparative study on the performance of reliability assessment methods based on adaptive surrogate models to accurately assess the reliability of automobile…

Abstract

Purpose

This study conducts a comparative study on the performance of reliability assessment methods based on adaptive surrogate models to accurately assess the reliability of automobile components, which is critical to the safe operation of vehicles.

Design/methodology/approach

In this study, different adaptive learning strategies and surrogate models are combined to study their performance in reliability assessment of automobile components.

Findings

By comparing the reliability evaluation problems of four automobile components, the Kriging model and Polynomial Chaos-Kriging (PCK) have better robustness. Considering the trade-off between accuracy and efficiency, PCK is optimal. The Constrained Min-Max (CMM) learning function only depends on sample information, so it is suitable for most surrogate models. In the four calculation examples, the performance of the combination of CMM and PCK is relatively good. Thus, it is recommended for reliability evaluation problems of automobile components.

Originality/value

Although a lot of research has been conducted on adaptive surrogate-model-based reliability evaluation method, there are still relatively few studies on the comprehensive application of this method to the reliability evaluation of automobile component. In this study, different adaptive learning strategies and surrogate models are combined to study their performance in reliability assessment of automobile components. Specially, a superior surrogate-model-based reliability evaluation method combination is illustrated in this study, which is instructive for adaptive surrogate-model-based reliability analysis in the reliability evaluation problem of automobile components.

Details

International Journal of Structural Integrity, vol. 14 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 2 October 2017

Volkan Yasin Pehlivanoglu

The purpose of this paper is to improve the efficiency of particle optimization method by using direct and indirect surrogate modeling in inverse design problems.

Abstract

Purpose

The purpose of this paper is to improve the efficiency of particle optimization method by using direct and indirect surrogate modeling in inverse design problems.

Design/methodology/approach

The new algorithm emphasizes the use of a direct and an indirect design prediction based on local surrogate models in particle swarm optimization (PSO) algorithm. Local response surface approximations are constructed by using radial basis neural networks. The principal role of surrogate models is to answer the question of which individuals should be placed into the next swarm. Therefore, the main purpose of surrogate models is to predict new design points instead of estimating the objective function values. To demonstrate its merits, the new approach and six comparative algorithms were applied to two different test cases including surface fitting of a geographical terrain and an inverse design of a wing, the averaged best-individual fitness values of the algorithms were recorded for a fair comparison.

Findings

The new algorithm provides more than 60 per cent reduction in the required generations as compared with comparative algorithms.

Research limitations/implications

The comparative study was carried out only for two different test cases. It is possible to extend test cases for different problems.

Practical implications

The proposed algorithm can be applied to different inverse design problems.

Originality/value

The study presents extra ordinary application of double surrogate modeling usage in PSO for inverse design problems.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 July 2017

Leifur Leifsson and Slawomir Koziel

The purpose of this paper is to reduce the overall computational time of aerodynamic shape optimization that involves accurate high-fidelity simulation models.

Abstract

Purpose

The purpose of this paper is to reduce the overall computational time of aerodynamic shape optimization that involves accurate high-fidelity simulation models.

Design/methodology/approach

The proposed approach is based on the surrogate-based optimization paradigm. In particular, multi-fidelity surrogate models are used in the optimization process in place of the computationally expensive high-fidelity model. The multi-fidelity surrogate is constructed using physics-based low-fidelity models and a proper correction. This work introduces a novel correction methodology – referred to as the adaptive response prediction (ARP). The ARP technique corrects the low-fidelity model response, represented by the airfoil pressure distribution, through suitable horizontal and vertical adjustments.

Findings

Numerical investigations show the feasibility of solving real-world problems involving optimization of transonic airfoil shapes and accurate computational fluid dynamics simulation models of such surfaces. The results show that the proposed approach outperforms traditional surrogate-based approaches.

Originality/value

The proposed aerodynamic design optimization algorithm is novel and holistic. In particular, the ARP correction technique is original. The algorithm is useful for fast design of aerodynamic surfaces using high-fidelity simulation data in moderately sized search spaces, which is challenging using conventional methods because of excessive computational costs.

Article
Publication date: 16 April 2018

Jinglai Wu, Zhen Luo, Nong Zhang and Wei Gao

This paper aims to study the sampling methods (or design of experiments) which have a large influence on the performance of the surrogate model. To improve the adaptability of…

Abstract

Purpose

This paper aims to study the sampling methods (or design of experiments) which have a large influence on the performance of the surrogate model. To improve the adaptability of modelling, a new sequential sampling method termed as sequential Chebyshev sampling method (SCSM) is proposed in this study.

Design/methodology/approach

The high-order polynomials are used to construct the global surrogated model, which retains the advantages of the traditional low-order polynomial models while overcoming their disadvantage in accuracy. First, the zeros of Chebyshev polynomials with the highest allowable order will be used as sampling candidates to improve the stability and accuracy of the high-order polynomial model. In the second step, some initial sampling points will be selected from the candidates by using a coordinate alternation algorithm, which keeps the initial sampling set uniformly distributed. Third, a fast sequential sampling scheme based on the space-filling principle is developed to collect more samples from the candidates, and the order of polynomial model is also updated in this procedure. The final surrogate model will be determined as the polynomial that has the largest adjusted R-square after the sequential sampling is terminated.

Findings

The SCSM has better performance in efficiency, accuracy and stability compared with several popular sequential sampling methods, e.g. LOLA-Voronoi algorithm and global Monte Carlo method from the SED toolbox, and the Halton sequence.

Originality/value

The SCSM has good performance in building the high-order surrogate model, including the high stability and accuracy, which may save a large amount of cost in solving complicated engineering design or optimisation problems.

Details

Engineering Computations, vol. 35 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 5000