Search results

1 – 10 of 879
Article
Publication date: 29 June 2012

A.P. Kabra, P. Mahanwar, V. Shertukde and V. Bambole

The purpose of this paper is to formulate two component polyurethane coatings based on acrylic polyol, to study the effects of variable nanosilica loadings in these coatings on…

Abstract

Purpose

The purpose of this paper is to formulate two component polyurethane coatings based on acrylic polyol, to study the effects of variable nanosilica loadings in these coatings on different morphological, optical, mechanical, corrosion resistance and weather resistance properties and to study the intercalation of acrylic polyol molecules into nanosilica crystals by XRD technique.

Design/methodology/approach

Two component polyurethane coatings were synthesised using acrylic polyol and isocyanate HDI. The nanosilica was incorporated in polyurethane formulation at the weight ratios of 1%, 3% and 5% based on total weight of polyol and isocyanate. The performance of nanocoatings was compared for variable loads of nanosilica for different properties such as morphological, optical, mechanical, corrosion resistance, weather resistance and were studied for intercalation of acrylic polyol into nanosilica crystals by XRD technique.

Findings

Improvement in the properties of polyurethane coatings is achieved with the incorporation of nanosilica. The improvement is the result of inherently high properties of inorganic nanosilica. Tensile strength, scratch hardness, abrasion resistance, corrosion and weathering resistance show significant improvement in performance with the incorporation of nanosilica. Properties are found to deteriorate beyond a certain loading of nanosilica; hence it is important to optimise loading level. The optimal range for high performance was found to be in the range of 1% to 3%. The improvement was a result of synergistic behaviour and good interfacial interaction between polyurethane and nanosilica at optimal levels.

Research limitations/implications

The method used for incorporation of nanosilica into polyurethane was direct incorporation method. The other method of incorporation, i.e. in situ addition and its effect on properties can also be studied.

Practical implications

With the addition of optimal loading level of nanosilica to polyurethane coatings, properties can be enhanced up to the mark. The addition is relatively easy and cost effective.

Originality/value

The paper proves the significance of incorporation of nanosilica on original properties of polyurethane coatings and widens the area of applications of two component polyurethane coatings from acrylic polyol by strengthening them in their properties. The coatings can be applicable in high performance topcoats especially for automotive topcoats.

Article
Publication date: 8 August 2018

Sainan Zhang and Xiankai Jiang

The purpose of this paper is to synthesize and characterize a series of two-component aromatic waterborne polyurethane (2K-WPU) which is composed of non-ionic and anionic…

Abstract

Purpose

The purpose of this paper is to synthesize and characterize a series of two-component aromatic waterborne polyurethane (2K-WPU) which is composed of non-ionic and anionic polyisocyanate aqueous dispersion and polyurethane polyol aqueous dispersion.

Design/methodology/approach

The polyisocyanate aqueous dispersion was synthesized through non-ionic and anionic hydrophilic modification procedures. The values of the hydrogen bonding index (HBI) and molecule structures of WPU were obtained by Fourier transform infrared (FTIR). The thermal, mechanical and water resistance properties of 2K-WPU films were investigated.

Findings

The appearance of non-ionic polyisocyanate aqueous dispersion and anionic polyisocyanate aqueous dispersion was colorless translucent pan blue and yellow opaque emulsions, respectively. FTIR not only showed that 2K-WPU was obtained from the polymerization of polyisocyanate component and polyhydroxy component by polymerization but also showed that the content of hydrogen bondings of anionic 2K-WPU (WPU 2) was higher than non-ionic 2K-WPU (WPU 1). The glass-transition temperature (Tg), storage modulus and water resistance of WPU 2 were higher than WPU1, whereas the thermal stability of WPU1 was better than WPU 2.

Practical implications

The investigation established a method to prepare a series of 2K-WPU which was composed of non-ionic or anionic polyisocyanate aqueous dispersion and polyurethane polyol aqueous dispersion. The prepared 2K-WPU film could be applied as substrate resin material in the field of waterborne coating.

Originality/value

The paper established a method to synthesize a series of 2K-WPU. The effect of HBI value and the molecule structure of soft segment on the thermal stability, mechanical and water resistance properties of 2K-WPU films were studied.

Details

Pigment & Resin Technology, vol. 47 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 13 August 2018

Jizhi Zhang and Xiankai Jiang

The purpose of this paper is to synthesize and characterize a series of alicyclic two-component waterborne polyurethane (2K-WPU) which is composed of non-ionic polyisocyanate…

Abstract

Purpose

The purpose of this paper is to synthesize and characterize a series of alicyclic two-component waterborne polyurethane (2K-WPU) which is composed of non-ionic polyisocyanate aqueous dispersion and hydroxyl aqueous dispersion.

Design/methodology/approach

The appearances of aqueous dispersions and 2K-WPU films were observed by photographs. The micromorphology of alicyclic polyisocyanate aqueous dispersion was examined by scanning electron microscopy (SEM). The molecule structures of WPU were studied by Fourier transform infrared (FTIR). The effect of NCO:OH molar ratio of two components and trimethylolpropane (TMP) content on the thermal stability, mechanical and water resistance properties of 2K-WPU films was studied.

Findings

It was found by SEM that alicyclic polyisocyanate particles in aqueous dispersion showed a kind of spherical particle appearance, in which hydrophobic polyisocyanate was encapsulated by hydrophilic ether linkages segment. FTIR showed that WPU was polymerized through mixture of polyisocyanate component and hydroxyl component and increasing NCO:OH molar ratio of two components from 1.1:1 to 1.5:1 had increased the content of urea, urethane and allophanate of 2K-WPU films. Increasing NCO:OH molar ratio had improved the mechanical and thermal properties of the 2K-WPU film, but the water resistance of the 2K-WPU film increased first and then weakened. Increasing TMP contents from 1 to 0.75 mol for 1:5 system had improved the mechanical, thermal and water resistance properties of the 2K-WPU film.

Practical implications

The investigation established a method to prepare alicyclic 2K-WPU which is composed of non-ionic polyisocyanate aqueous dispersion and hydroxyl aqueous dispersion. The prepared 2K-WPU film could be applied in the field of waterborne surface coating, e.g. textile, wood and synthetic leather surfaces (Hasan et al., 2017; Akindoyo et al., 2016).

Originality/value

The paper established a method to synthesize alicyclic two-component 2K-WPU. The effect of NCO:OH molar ratio and TMP content on the thermal stability, mechanical and water resistance properties of 2K-WPU films were studied.

Details

Pigment & Resin Technology, vol. 47 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 7 September 2015

X. Jiang, L. Lin, X. Bai, S. Wang and C. Wang

The purpose of this paper is to investigate the effects of carbon nanotubes (CNTs) on the mechanical, thermal and colour properties of solvent-containing two-component polyurethane

Abstract

Purpose

The purpose of this paper is to investigate the effects of carbon nanotubes (CNTs) on the mechanical, thermal and colour properties of solvent-containing two-component polyurethane (PU) coating.

Design/methodology/approach

Fourier transform infrared spectroscopy and observation of dispersion stability were used to assess the effects of acid treatment on CNTs. The CNTs and PU composite coating was synthesised by in situ polymerisation and bending polymerisation, and the mechanical, thermal and colour appearance properties of coating were characterised.

Findings

It was found that desirable modifications to CNTs occurred after acid treatment; thus, mainly carboxylic acid groups were introduced onto the surface of CNTs. And the acid-treated CNTs could improve the mechanical and thermal properties of PU coating, and the properties of composite coating was improved more successfully by in situ polymerisation than by blending polymerisation.

Practical implications

The investigation established a method to synthesise CNTs and PU composite coating. The mechanical and thermal properties of PU coating could be improved by the inclusion of CNTs.

Originality/value

This study established a method to synthesise CNTs and PU composite coating by in situ polymerisation and blending polymerisation; the effects of CNTs on modifying mechanical, thermal and colour properties of PU coating were investigated and compared in detail.

Details

Pigment & Resin Technology, vol. 44 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 6 September 2022

Nader L. Labib, Fouad Zahran, Mohamed Adel Youssef, Azza M. Mazrouaa and Manal Gamal Mohamed

This study aims to extend the pot life without altering the qualities and performance of the coating, which is important to increase when manufacturing polyurethane coatings.

Abstract

Purpose

This study aims to extend the pot life without altering the qualities and performance of the coating, which is important to increase when manufacturing polyurethane coatings.

Design/methodology/approach

An acrylic polyol from a mixture of different monomers of hydroxypropyl methacrylate, methacrylic acid, 2-ethylhexyl acrylate, methyl methacrylate and n-butyl methacrylate was prepared with different ratios of 2,4-pentanedione as a pot life extender. The reaction takes place in presence of di-tert-butyl peroxide as initiator with samples (T1–T7). The physical properties of prepared acrylic polyol were characterized. Then, coating polyurethane varnish was prepared from the prepared acrylic polyol with an aliphatic polyisocyanate in a 1:1 equivalent ratio of OH:NCO at room temperature, in presence of paint thinner (diluents/solvent) and dibutyltin dilaurate as a catalyst to give samples (T1C–T7C). This coating was evaluated via Fourier-transform infrared spectroscopy, drying time, hardness and gloss, distinctness of image and reflected image quality.

Findings

The coating has a prolonged pot life while still maintaining the other qualities, thanks to the greater 2,4-pentanedione content.

Originality/value

It is desired to have a paint which has a satisfactory pot life, short curing time and reduces many drawbacks such as inefficient working and deterioration of the paint before application.

Details

Pigment & Resin Technology, vol. 53 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 February 1995

Additions for use in polyurethane coatings. Angus Chemie GmbH has announced the introduction of two new additions to its product line for polyurethane coatings. Zoldine RD‐20…

Abstract

Additions for use in polyurethane coatings. Angus Chemie GmbH has announced the introduction of two new additions to its product line for polyurethane coatings. Zoldine RD‐20 Reactive Diluent is designed to replace higher viscosity polyols in high solids polyurethane coatings. Zoldine MS‐Plus Moisture Scavenger eliminates bubbles, pinholes, downglossing and hazing in polyurethane coatings to allow for fast cure times in all types of weather.

Details

Pigment & Resin Technology, vol. 24 no. 2
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 1 October 1981

Americus

The number of new alkyd resin‐based coatings introduced decreases yearly. To be sure, alkyd resins are the most important vehicles used for solvent‐based paints. On the other…

Abstract

The number of new alkyd resin‐based coatings introduced decreases yearly. To be sure, alkyd resins are the most important vehicles used for solvent‐based paints. On the other hand, the technology is mature and the major variations in the products are those which must be made to accommodate needs of the user. For the most part, these do not lead to completely new types of compositions.

Details

Pigment & Resin Technology, vol. 10 no. 10
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 1 September 1985

Americus

Within the vast framework of the mature coatings industry are numerous areas where profitable specialty coatings are required. Each year several score of these are announced in…

Abstract

Within the vast framework of the mature coatings industry are numerous areas where profitable specialty coatings are required. Each year several score of these are announced in the developed countries which have paint industries.

Details

Pigment & Resin Technology, vol. 14 no. 9
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 7 September 2015

A. Ravi, T. Praveen, Chepuri R.K Rao, Ramanuj Narayan and K.V.S.N. Raju

The purpose of this paper is to get the insulating polyurethane (PU) as conductive type polymer by compositing with oligoanilines, namely, tetraaniline (TANi) with an implication…

Abstract

Purpose

The purpose of this paper is to get the insulating polyurethane (PU) as conductive type polymer by compositing with oligoanilines, namely, tetraaniline (TANi) with an implication of its use as anti-corrosion coating material.

Design/methodology/approach

Water dispersion of PU was prepared and used as a host material for TANi for composite formulation.

Findings

The composites are very useful as anti-corrosion coating on mild steel as evident from Tafel polarisation studies.

Research limitations/implications

The solubility of TANi is limited in other organic solvents; because of this, a high-boiling solvent like N-methyl-2-pyrrolidone (NMP) is used.

Practical implications

It can be used as a good anti-corrosion coating on mild steel. Apart from anti-corrosion material, this can be used as conductive-based sensor material and also electrostatic dissipation (ESD) or electromagnetic interference (EMI) shield.

Originality/value

The work is original.

Article
Publication date: 19 September 2023

Xingbing Yang, Xinye Wang, Shuang Huang, Xin Liu, Xiang Huang and Ting Lei

In this study, solid formaldehyde, benzoguanamine and butanol were used to synthesize butylated benzo-amino resin by one-step-two-stage method.

Abstract

Purpose

In this study, solid formaldehyde, benzoguanamine and butanol were used to synthesize butylated benzo-amino resin by one-step-two-stage method.

Design/methodology/approach

This research first examined the influence of solid formaldehyde content on the hydroxymethylation phase. Subsequently, the effects of butanol content, etherification time and hydrochloric acid content on the formation of benzo-amino resin during the etherification stage were studied in detail. In addition, the reaction process was further analyzed through interval sampling withdrawing during the hydroxymethylation and etherification stages. Finally, the synthesized benzo-amino resins were used in the production of high solid content polyester and acrylic coatings and the properties of that were also evaluated.

Findings

Based on the experimental findings, the authors have successfully determined the optimal process conditions for the one-step-two-stage method in this study. The hydroxymethylation stage demonstrated the most favorable outcomes at a reaction temperature of 60°C and a pH of 8.5. Similarly, for the etherification stage, the optimal conditions were achieved at a temperature of 45°C and a pH of 4.5. Furthermore, the investigation revealed that a ratio of benzoguanamine to solid formaldehyde to n-butanol, specifically at 1:5.2:15, produced the best results. The performance of the resulting etherified benzo-amino resin was thoroughly evaluated in high solid content coatings, and it exhibited promising characteristics. Notably, there was a significant enhancement in the water resistance, solvent resistance and glossiness of canned iron printing varnish coatings.

Originality/value

Amino resin, a versatile chemical compound widely used in various industries, presents challenges in terms of sustainability and operational efficiency when synthesized using conventional methods, primarily relying on a 37% formaldehyde solution. To address these challenges, the authors propose a novel approach in this study that combines the advantages of the solid formaldehyde with a two-stage catalytic one-step synthesis process. The primary objective of this research is to minimize the environmental impact associated with amino resin synthesis, optimize resource utilization and enhance the economic feasibility for its industrial implementation. By adopting this alternative approach, the authors aim to contribute toward a more sustainable and efficient production of amino resin.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 879