Search results

1 – 10 of 554
Article
Publication date: 6 June 2016

Luis Manuel Becerra Lucatero, David Turcio Ortega, Thangarasu Pandiyan, Narinder Singh, Harpreet Singh and Tejinder Pal Singh Sarao

The purpose of this paper is to study the corrosion inhibition tendency of cigarette waste (water extracts of cigarette butts, WECB) on an iron surface in an acid medium.

Abstract

Purpose

The purpose of this paper is to study the corrosion inhibition tendency of cigarette waste (water extracts of cigarette butts, WECB) on an iron surface in an acid medium.

Design/methodology/approach

The electrochemical impedance spectroscopy and polarization techniques were used to analyze the performance of WECB on the iron working electrode. Electrochemical polarization curves were used to determine the intensity of the metal corrosion, specifically to see the effectiveness of the anodic and cathodic reactions in the corrosive medium having WECB. Moreover, the electrochemical impedance of WECB with electrode was analyzed qualitatively. The electrochemical data that relate isotherm adsorption of WECB with iron were analyzed; furthermore, the scanning electron microscope was used to analyze morphology change during the corrosion inhibition.

Findings

After analyzing the impedance data, it is seen that there exists a single capacitive semicircle at the higher frequency range corresponding to a one-time constant in the Bode-phase plot. In the polarization curves studies (Tafel slopes), the current densities of both cathodic and anodic branches are greatly affected in the presence of WECB in the corrosive medium, suggesting that WECB performs as a mixed inhibitor. The free energy data and Temkin adsorption isotherm process show that the adsorption process of WECB on the metal surface follows a physisorption. Furthermore, the WECB-coated metal surface analyzed by scanning electron microscopy confirms the corrosion inhibition of WECB in the acid medium.

Research limitations/implications

An in-depth characterization of the corroded scales is recommended to endorse the results of this study.

Social implications

There may be some people who may challenge that the research may encourage smoking; however, if taken positively, the research offers a very cost-effective and eco-friendly solution to tackle the cigarette waste.

Originality/value

Idea of the present work is to reuse the WECB as corrosion inhibitors for the metal surface, as this waste contains large amount of nicotine, which exhibits corrosion inhibition properties. The present work deals with the study of corrosion inhibition properties of WECB on the iron surface in acid medium. The findings of this study can be very useful from scientific, as well as industrial application point of view. Moreover, the research is important as there is no proper recycling process for this waste so as to maintain a clean environment.

Details

Anti-Corrosion Methods and Materials, vol. 63 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 16 January 2007

A.K. Mishra, R. Balasubramaniam and S. Tiwari

The research work in this paper aims to focus on understanding the corrosion inhibition of 6061‐8 (vol.%) SiC in 3.5 per cent NaCl solution using different concentrations (250…

1707

Abstract

Purpose

The research work in this paper aims to focus on understanding the corrosion inhibition of 6061‐8 (vol.%) SiC in 3.5 per cent NaCl solution using different concentrations (250, 500, 750 and 1,000 ppm) of cerium and lanthanum chloride.

Design/methodology/approach

The corrosion inhibition of 6061‐SiC in 3.5 per cent NaCl solution using the rare earth chloride inhibitors was analyzed by different electrochemical techniques. The techniques employed were linear polarization, Tafel extrapolation and electrochemical impedance spectroscopy (EIS). Further, surface characterization, before and after inhibitor addition, was studied using scanning electron microscopy (SEM) and energy dispersive analysis using X‐ray.

Findings

It was observed that the polarization resistance increased after addition of LaCl3 and CeCl3, with maximum increase noticed for 250 ppm LaCl3 and 1,000 ppm CeCl3. CeCl3 addition showed better improvement in polarization resistance value compared with LaCl3 addition. Pitting nucleation resistance also increased with addition of LaCl3 and CeCl3, with maximum obtained for 250 ppm LaCl3 and 500 ppm CeCl3. EIS studies showed that there was a significant increase in resistance of areas not covered by the surface film after addition of LaCl3 and CeCl3, when compared with the case without inhibitor, with a maximum increase observed with 1,000 ppm CeCl3. Rare earth chloride addition resulted in an increase in resistance on both cathodic intermetallic sites as well as the pitted regions by formation of precipitates of their oxide/hydroxide on those locations. This gave the high pitting nucleation resistance as well as improved corrosion resistance.

Research limitations/implications

It was observed that optimum concentrations of CeCl3 and LaCl3 resulted in good corrosion resistance properties on 6061‐SiC in 3.5 per cent NaCl solutions. Even small quantities of these inhibitors resulted in high corrosion resistance. However, it should be noted that both LaCl3 and CeCl3 did not follow a simple increase in corrosion resistance with composition, despite both being rare earth chloride inhibitors, and this issue merits further research.

Practical implications

Metal matrix composites (MMC) are of great use in the aerospace, military and automotive industries due to their good mechanical strength/density and stiffness/density ratios. A typical example might be the reinforcement of Al alloys with SiC particulates, which leads to a new generation of engineering materials. However, the addition of a reinforcing phase can cause discontinuities in any protective surface film, increasing the number of sites where corrosion can be initiated and rendering the composite liable to severe attack. Thus, this research work was performed to investigate if a suitable concentration of lanthanide salts (LaCl3 and CeCl3) could be identified that could improve both uniform and pitting corrosion resistance.

Originality/value

Earlier studies on the corrosion inhibition of 6061‐SiC used cerium conversion coatings. More recently (i.e. during the last 1‐2 years) work has started on lanthanum conversion coating on Al alloys. However, little work has been carried out on use of these lanthanide salts (CeCl3 and LaCl3) as corrosion inhibitors for 6061‐SiC. The present research work was performed in order to better understand the effectiveness of these inhibitors to reduce corrosion attack on 6061‐8(vol.%) SiC.

Details

Anti-Corrosion Methods and Materials, vol. 54 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 April 1998

A.M.S. Abdennabi, A.I. Abdulhadi and S. Abu‐Orabi

Corrosion inhibitors represent the most cost effective and flexible means of controlling internal corrosion associated with oil and gas production. Tests were carried out to…

445

Abstract

Corrosion inhibitors represent the most cost effective and flexible means of controlling internal corrosion associated with oil and gas production. Tests were carried out to demonstrate the structure/effect relationships which are effective in controlling the inhibition efficiency. To illustrate this approach, the substituent field effect at the paraposition of 1(Benzyl)1‐H‐4,5‐Dibenzoyl‐1,2,3‐ Triazole (BDBT) on corrosion inhibition has been investigated. Mild steel rotating cylinder electrode in acid media was used in conjunction with Tafel polarization technique, AC impedance measurements and continuous linear polarization resistance method. The nitro group was found to cause a considerable decrease in the corrosion inhibition of the parent compound BDBT. Owing to the induction effects of Br on the aromatic ring the bromo derivative has better inhibition protection than the methyl derivative. The corrosion rate profiles obtained from on‐line polarization technique showed that the inhibition capacity of the studied substituents at the para‐position increases as follows: NO2 < CH3 < Br < H.

Details

Anti-Corrosion Methods and Materials, vol. 45 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 22 June 2012

Hosni M. Zubeir

The purpose of this paper is to investigate the effect of iron content (2% and up to 6% Fe) on the corrosion behavior of 90Cu‐10Ni alloys in 3.5% NaCl at different temperatures…

Abstract

Purpose

The purpose of this paper is to investigate the effect of iron content (2% and up to 6% Fe) on the corrosion behavior of 90Cu‐10Ni alloys in 3.5% NaCl at different temperatures (23, 50 and 80°C) under stagnant conditions and fluid flow (with an agitation speed of 350 and 900 RPM). The laboratory study was conducted following a failure of high iron content (up to 6%) 90Cu‐10Ni heat exchanger tubes in a desalination plant.

Design/methodology/approach

Potentiodynamic polarization measurement (DC) was used to estimate the corrosion rate of the 90Cu‐10Ni alloys in NaCl solutions under stagnant and fluid flow conditions.

Findings

It was found that the higher iron content cupronickel material suffered higher corrosion rates in all tests. The intensity of the corrosion attack of both materials was increased significantly with increasing experimental temperature or flow velocity. The results support a previous prediction that the presence of excess iron (well above 2%) has played a major role in corrosion failure of 90Cu‐10Ni heat exchanger tubing material in seawater.

Originality/value

This paper explains the role of iron content on the corrosion behavior of 90Cu‐10Ni alloys in 3.5% NaCl under stagnant and fluid flow conditions.

Details

Anti-Corrosion Methods and Materials, vol. 59 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 16 May 2018

Moosa Es’haghi, Amirhossein Amjad, Sorayya Asghari and Ali Lotfi

Corrosion inhibitors most commonly are used in the acid pickling, cleaning and etching solutions. Plant extracts as rich and cheap resources are among the eco-friendly inhibitors…

Abstract

Purpose

Corrosion inhibitors most commonly are used in the acid pickling, cleaning and etching solutions. Plant extracts as rich and cheap resources are among the eco-friendly inhibitors. This study aims to investigate the inhibition effect of plantain extract on mild steel corrosion.

Design/methodology/approach

The inhibition influence of plantain extract on mild steel corrosion was investigated through Tafel polarization, electrochemical impedance spectroscopy and weight loss techniques in 1 M HCl solution. Furthermore, the sample surface morphology was verified by scanning electron microscopy.

Findings

The inhibition effect of the plantain extract was increased with the increase in the inhibitor concentration due to its adsorption on the surface of samples. The adsorption mechanism of the plantain extract on mild steel is physical adsorption and follows Langmuir isotherm.

Originality/value

The results obtained from different methods showed that the plantain extract has good inhibition performance on corrosion mild steel in 1 M HCl solution as a green inhibitor.

Details

Anti-Corrosion Methods and Materials, vol. 65 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 6 March 2017

Jiamei Wang and Le Fu Zhang

The purpose of this study was to investigate the effects of deformation-induced martensite on electrochemical corrosion behaviors of 304 austenitic stainless steel in a simulated…

Abstract

Purpose

The purpose of this study was to investigate the effects of deformation-induced martensite on electrochemical corrosion behaviors of 304 austenitic stainless steel in a simulated primary water environment of a pressurized water reactor nuclear power plant with boric acid and lithium hydroxide contaminated with chloride by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), Mott–Schotty curves and X-ray photoelectron spectroscopy (XPS).

Design/methodology/approach

The effects of deformation-induced martensite transformation on electrochemical corrosion behaviors of 304 austenitic stainless steel was investigated in a simulated primary water environment of a pressurized water reactor nuclear power plant with boric acid and lithium hydroxide contaminated with 0.1 M Cl by potentiodynamic polarization, EIS, Mott–Schotty curves and XPS in this paper.

Findings

The results revealed that the martensitic phase contents increased with the level of cold deformation. The general corrosion current density and the corrosion potential increased and decreased, respectively, with the increase of cold deformation degree. However, the pitting potential decreased as the cold deformation increased up to 20 per cent, then a slight increase was observed at 35 per cent cold working. It was found from Mott–Schottky curves and XPS analysis that as the cold deformation degree increased from 0 to 35 per cent, the doping concentrations of the oxide films increased; however, the film thickness decreased, which indicates that both density and integrity of the films are degraded significantly as the deformation degree increases, and this ultimately contributes to the significant increment of the general corrosion rate and reduction of the pitting corrosion resistance.

Originality/value

The effects of deformation-induced martensite transformation on electrochemical corrosion behaviors of 304 austenitic stainless steel was investigated in a simulated primary water environment of a pressurized water reactor nuclear power plant with boric acid and lithium hydroxide contaminated with 0.1 M Cl by potentiodynamic polarization, EIS, Mott–Schotty curves and XPS in this paper.

Details

Anti-Corrosion Methods and Materials, vol. 64 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 4 January 2013

Layla A. Al Juhaiman, Amal Abu Mustafa and Wafaa K. Mekhamer

The purpose of this paper is to study the corrosion inhibition of carbon steel (CS) using a “green” inhibitor, polyvinyl pyrrolidone (PVP), in an aerated, alkaline medium…

Abstract

Purpose

The purpose of this paper is to study the corrosion inhibition of carbon steel (CS) using a “green” inhibitor, polyvinyl pyrrolidone (PVP), in an aerated, alkaline medium containing 0.1M NaCl (blank) at pH 9 and pH 10. The effects of some additives, such as KI and untreated Saudi clay (UC) were investigated.

Design/methodology/approach

Weight loss method, surface studies, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarisation were applied.

Findings

The inhibition efficiencies of blank solutions with 1000 ppm PVP ranged from 66‐78% for weight loss results and from 23‐66% for the electrochemical tests. The EIS results indicated that the adsorption of PVP led to the formation of a protective film on the metal/solution interface. Tafel results indicated that PVP is a mixed‐type inhibitor. The addition of KI to PVP and the blank solution significantly increased inhibition efficiency, while the addition of UC reduced the inhibition efficiency. Adding KI resulted in a high surface‐area coverage ranging from about 91% after one hour to about 81% after 45 hours. The adsorption mechanism was fitted with a Langmuir isotherm.

Research limitations/implications

This is a static study, whereas in oil drilling there is a dynamic system; however the findings may apply to both systems.

Practical implications

Carbon steel is used in alkaline and neutral media in the petroleum industry. The effect of KI additives was examined.

Social implications

The paper shows how it may be possible to reduce the cost of repair of equipment and lower the environmental impact of corrosion.

Originality/value

There are few studies which investigate the combining effect of polymer and KI in alkaline medium containing NaCl.

Article
Publication date: 13 September 2011

Fatima Bensajjay, Saliha Alehyen, Mohammed El Achouri, Najat Hajjaji, Abdelkbir Bellaouchou, Lourdes Perez and Maria Rosa Infante

The purpose of this investigation is the evaluation of the inhibitive performance of a new “gemini” surfactant in the series of bis‐quat: N, N, N′, N″, N″‐pentamethyl…

Abstract

Purpose

The purpose of this investigation is the evaluation of the inhibitive performance of a new “gemini” surfactant in the series of bis‐quat: N, N, N′, N″, N″‐pentamethyl diethyleneamine‐N, N″‐di‐[tetradecylammonium bromide] on the corrosion of iron in 1 M HCl by gravimetric, potentiodynamic and electrochemical impedance measurements. The effect of the temperature on the corrosion behavior of iron in 1 M HCl without and with inhibitor is studied in the temperature range (298‐333 K). This work also attempts to correlate thermodynamic and kinetic parameters with the inhibition effect.

Design/methodology/approach

The inhibition efficiency of gemini synthesized is investigated by weight loss, potentiodynamic polarization and impedance spectroscopy methods.

Findings

The synthesized gemini bis‐quat acted as a good inhibitor in 1 M HCl, and inhibition efficiency increased with inhibitor concentration and temperature. Polarization curves showed that the surfactant was a mixed‐type inhibitor in hydrochloric acid. Impedance spectroscopy measurements showed that the inhibitor acted through the formation of a multilayer film at the iron surface. The adsorption of inhibitor on the iron surface obeyed the Langmuir adsorption isotherm equation. The inhibition effect was satisfactorily explained by both thermodynamic and kinetic parameters.

Originality/value

The adsorption of surfactants in the metal surface can markedly change the corrosion resisting property of the metal. So the study of the relation between the adsorption and corrosion inhibition is of a great importance. This was the first attempt to study the inhibition properties of gemini surfactants at the host laboratory.

Details

Anti-Corrosion Methods and Materials, vol. 58 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 4 September 2017

Zeinab Abdel Hamid, Sayed Abd El Rehim and Moustafa Ibrahim

The purpose of this work was to investigate the effect of Si content of steel substrate on the performance of the hot-dip galvanized layer. Moreover, the structure of the…

Abstract

Purpose

The purpose of this work was to investigate the effect of Si content of steel substrate on the performance of the hot-dip galvanized layer. Moreover, the structure of the galvanized layers and the corrosion performance of the galvanized steel in 3.5 per cent NaCl solution have been studied.

Design/methodology/approach

The galvanized layer has been formed by the hot-dip technique, and the influence of silicon content in the steel composition on the corrosion performance of the galvanized steel was estimated. The surface morphologies and chemical compositions of the coated layers were assessed using scanning electron microscopy and energy-dispersive X-ray analysis, respectively. Potentiodynamic polarization Tafel lines and electrochemical impedance spectroscopy (EIS) tests were used to evaluate the corrosion resistance of the galvanized steel in 3.5 per cent NaCl solution.

Findings

The results proved that adhere, compact and continuous coatings were formed with steel containing 0.56 Wt.% Si, while cracks and overly thick coatings were obtained with steel containing 1.46 Wt.% Si. Tafel plots illustrated that the corrosion rate of galvanized steel containing 0.08 and 0.56 Wt.% Si was lower than that of the galvanized steel containing 1.46 Wt.% Si. Also, the results of the EIS reveal that the impedance of the galvanized steel containing 0.08 and 0.56 Wt.% Si was the highest and the lowest, respectively, with the steel containing 1.46 Wt.% Si.

Social implications

Generally, in industry steels containing high amounts of silicon (0.15-0.25 Wt.%) can be galvanized satisfactory either by controlling the temperature (440°C) or adding Ni to the galvanized bath. The low temperature reduces the coating thickness; nickel amount must be controlled to prevent the formation of higher amounts of dross. This study proved that high Si steel of up to 0.56 Wt.% can be galvanized at 460°C without adding Ni to the galvanized bath and form adhere, compact, free cracks and have good corrosion resistance. Consequently, a social benefit can be associated with galvanizing high Si steel, leading to an increase in the cost of the process.

Originality/value

The results presented in this work are an insight into understanding the hot-dip galvanizing of high Si steel. The corrosion resistance of galvanized steel containing 0.56 Wt.% Si alloys has been considered as a promising behavior. In this work, a consistent assessment of the results was achieved on the laboratory scale.

Details

Anti-Corrosion Methods and Materials, vol. 64 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 13 June 2018

Zahra Shams Ghahfarokhi, Mojtaba Bagherzadeh, Ebrahim Ghiamati Yazdi and Abbas Teimouri

The purpose of this paper is study of the type of functional group and its situation on phenyl molecule, in increasing the corrosion protection of modified graphene layers by it…

Abstract

Purpose

The purpose of this paper is study of the type of functional group and its situation on phenyl molecule, in increasing the corrosion protection of modified graphene layers by it. Corrosion protection efficiency of graphene was raised via modifying the surface of graphene-coated carbon steel (CS/G) by using aromatic molecules. Phenyl groups with three different substitutions including COOH, NO2 and CH3 grafted to graphene via diazonium salt formation route, by using carboxy phenyl, nitro phenyl and methyl phenyl diazonium salts in ortho, meta and para spatial situations.

Design/methodology/approach

Molecular bindings were characterized by using X-ray diffractometer, fourier-transform infrared spectroscopy (FTIR), Raman and scanning electron microscopy (SEM)/ energy dispersive X-ray analysis (EDXA) methods. Anti-corrosion performance of modified CS/G electrodes was evaluated by weight loss and electrochemical techniques, potentiodynamic polarization (Tafel) and electrochemical impedance spectroscopy, in 3.5 per cent NaCl solution.

Findings

The obtained results confirmed covalently bonding of phenyl groups to the graphene surface. Also, the observed results showed that substitution spatial situations on phenyl groups can affect charge transfer resistance (Rct), corrosion potential (Ecorr), corrosion current density (jcorr) and the slope of the anodic and cathodic reaction (ßa,c), demonstrating that the proposed modification method can hinder the corrosion reactions. The proposed modification led to restoring the graphene surface defects and consequently increasing its corrosion protection efficiency.

Originality/value

The obtained results from electrochemical methods proved that protection efficiency was observed in order COOH < NO2 < CH3 and MPD in the para spatial situation and showed the maximum protection efficiency of 98.6 per cent in comparison to other substitutions. Finally, the ability of proposed graphene surface modification route was further proofed by using surface methods, i.e. SEM and EDXA, and contact angles measurements.

Details

Anti-Corrosion Methods and Materials, vol. 65 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 554