Search results

1 – 10 of over 8000
Article
Publication date: 5 September 2016

Shekhar P. Tambe, Shwetambari D. Jagtap, Ramakant N. Choudhari and B.P. Mallik

The performance of epoxy coating on metal substrate at low temperature and high humidity application has adverse effect on cure rate, film properties and adhesion. In recent…

Abstract

Purpose

The performance of epoxy coating on metal substrate at low temperature and high humidity application has adverse effect on cure rate, film properties and adhesion. In recent years, several advanced amine cross-linking agents having superior curing ability at low temperature application environment have been introduced. The aim of this paper is to study the properties of epoxy-based coating cured with different cross-linking agents designed for low temperature application at different environmental conditions.

Design/methodology/approach

Series of cross linking agents such as modified cycloaliphatic amine (H1), polyamine adduct (H2), modified aliphatic ketamine (H3), phenalkamine (H4) and phenalkamide (H5) have been studied to evaluate their performance in epoxy compositions when cured at four environmental conditions, i.e. at ambient and sub-ambient temperatures with 60 and 90 per cent relative humidity, respectively. The effect of curing conditions was investigated by evaluating different physico-mechanical properties. Dynamic mechanical analyser technique was used to determine glass transition temperature (Tg) and cross-link density (ρ) of coatings. Anticorrosive properties of coatings also have been studied by electrochemical impedance spectroscopy.

Findings

The outcome of this study is expected to generate new insight into the curing behaviour of epoxy coating using different cross-linking agents which are recommended for low temperature application. Optimum physico-mechanical and corrosion resistance properties have been obtained by phenalkamine curing agent at low temperature and high humidity condition.

Practical implications

This study is an experimental approach to select the better cross-linking agent for low temperature application. Different test conditions were measured for understanding the performance of epoxy coating cured at different environmental condition.

Originality/value

The understanding reaction mechanism of the epoxy resin with cross-linking agent at different environmental condition is the great challenge and is hardly investigated in the literature. Therefore, in this research, the influence of climatic conditions and type of cross-linking agents on curing behaviour of epoxy-based coating was investigated.

Details

Pigment & Resin Technology, vol. 45 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 7 March 2016

Frazer Howard Smith

During offshore pipe-lay, pipe lengths with anticorrosion coating are welded together, and, to facilitate the welding process, the ends of the pipe remain uncoated. A wide range…

Abstract

Purpose

During offshore pipe-lay, pipe lengths with anticorrosion coating are welded together, and, to facilitate the welding process, the ends of the pipe remain uncoated. A wide range of field joint coating (FJC) types is available for coating this bare section, functioning in conjunction with the pipeline cathodic protection system to provide an anti-corrosion system or package. This paper aims to relate to two-layer type heat shrink sleeves (2LHSS), which commonly are used for FJC of concrete-weighted offshore pipelines where the sleeve typically is over-coated with a solid or foam type polyurethane “infill”. Similar sleeves also are used sometimes in exposed conditions on lines without concrete over-coating. The maximum allowable soluble salt contamination prior to application of high-performance coating systems can vary, depending upon the coating type, but typically has been set at 20 mg/m2 (de la Fuente et al., 2006). The first layer of three-layer heat shrink sleeve (3LHSS) systems for pipeline FJC, liquid epoxy, falls into this category (ISO_21809-3:2008, 2008). In contrast, the 2LHSS system does not use a liquid epoxy first layer but relies instead on the bonding of a “mastic” layer directly to the pipe metal surface. The maximum acceptable concentration of salt contamination on prepared metal surfaces prior to the application of 2LHSS has been a subject of debate and was the focus of this study. International standards for FJC do not provide a maximum salt level. However, some companies have continued to specify low thresholds for the maximum allowable salt level for 2LHSS, which can result in expensive delays in production during offshore pipe-lay. In this study, salt contamination levels of up to 120 mg/m2 were found to have no effect on peeling performance after accelerated aging by hot water immersion. Furthermore, preparation for welding and the use of potable water during ultrasonic testing procedures prior to FJC, typically reduces the salt contamination level to below 50 mg/m2 providing a strong case for the deletion of salt contamination testing for 2LHSS.

Design/methodology/approach

The potential risk of failure of the coating due to poor surface cleanliness/contamination was assessed by testing the adhesion between the coating and the steel substrate to which the coating is adhering, following a period of hot water immersion. Compliance with ISO 21809-3 “Annex I” requires 28 days’ immersion at maximum operating temperature. For this study, to create a severe situation, the test rings were subjected to accelerated aging by water immersion at the HSS upper specified temperature of 65°C for more than twice the specified period (ISO_21809-3:2008, 2008). Two HSS were tested; one was widely used in applications where exposure to moderate mechanical stress is required, having a high shear strength type mastic “hybrid” adhesive containing a significant proportion of amorphous polypropylene blended with tackifiers and ethylene vinyl acetate (EVA), Andrenacci et al. (2009) referred to as “Type A”. The second, referred to as “Type B”, is widely used in applications where it is covered by a layer of “infill”, typically consisting of polyurethane foam or solid polyurethane elastomer, i.e. typical design methodology for concrete coated pipelines. “Type B” HSS had a more moderate strength traditional type mastic than “Type A” containing a significant percentage of butyl rubber with asphalt, activation agents and tackifying resins. To determine how to apply the salt contamination without causing flash rust, a mini-study was completed on the steel substrate. After numerous trials, it was found impossible to not to form visible rust on the pipe surface. The extent of rusting was minimised by heating the pipe immediately after the application of the salt solution.

Findings

High levels of sea salt on power tool prepared pipe surfaces were investigated by peel testing of 2LHSS after hot water immersion and compared against peel tests undertaken prior to hot water immersion. The test conditions were considered severe: salt contamination levels of up to 120 mg/m2 applied on power tool cleaned pipe surfaces that had been aged for one year without prior grit blasting. The accelerated ageing procedure had twice the specified (ISO_21809-3:2008, 2008) water immersion duration, and the test samples had exposed edges providing the possibility for moisture to creep under the coating. The test results showed that there were no noticeable deleterious effects on the performance of the two most commonly used FJCs, 2LHSS. Therefore, it was concluded that, as the level of salt contamination on prepared pipe surfaces after wet non-destructive testing typically is much lower than the levels tested in this study, pipe surfaces prepared for the application of 2LHSS type do not require specific additional measures to further reduce salt contamination, provided that care is taken to ensure that these conditions are maintained consistently during pipe laying operations.

Practical implications

The frequency of salt contamination testing of power tool cleaned surfaces prior to mastic type heat shrink sleeves can be minimised, and perhaps omitted entirely, provided the above criteria are satisfied.

Originality/value

A literature review revealed there was little published information on the testing of 2LHSS and nothing related to hot water immersion testing. Hence, the results of this investigation have provided useful industrial data regarding the effect of hot water ageing and the influence of surface salt contamination on field joint corrosion prevention capabilities.

Details

Anti-Corrosion Methods and Materials, vol. 63 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 29 June 2012

A.P. Kabra, P. Mahanwar, V. Shertukde and V. Bambole

The purpose of this paper is to formulate two component polyurethane coatings based on acrylic polyol, to study the effects of variable nanosilica loadings in these coatings on…

Abstract

Purpose

The purpose of this paper is to formulate two component polyurethane coatings based on acrylic polyol, to study the effects of variable nanosilica loadings in these coatings on different morphological, optical, mechanical, corrosion resistance and weather resistance properties and to study the intercalation of acrylic polyol molecules into nanosilica crystals by XRD technique.

Design/methodology/approach

Two component polyurethane coatings were synthesised using acrylic polyol and isocyanate HDI. The nanosilica was incorporated in polyurethane formulation at the weight ratios of 1%, 3% and 5% based on total weight of polyol and isocyanate. The performance of nanocoatings was compared for variable loads of nanosilica for different properties such as morphological, optical, mechanical, corrosion resistance, weather resistance and were studied for intercalation of acrylic polyol into nanosilica crystals by XRD technique.

Findings

Improvement in the properties of polyurethane coatings is achieved with the incorporation of nanosilica. The improvement is the result of inherently high properties of inorganic nanosilica. Tensile strength, scratch hardness, abrasion resistance, corrosion and weathering resistance show significant improvement in performance with the incorporation of nanosilica. Properties are found to deteriorate beyond a certain loading of nanosilica; hence it is important to optimise loading level. The optimal range for high performance was found to be in the range of 1% to 3%. The improvement was a result of synergistic behaviour and good interfacial interaction between polyurethane and nanosilica at optimal levels.

Research limitations/implications

The method used for incorporation of nanosilica into polyurethane was direct incorporation method. The other method of incorporation, i.e. in situ addition and its effect on properties can also be studied.

Practical implications

With the addition of optimal loading level of nanosilica to polyurethane coatings, properties can be enhanced up to the mark. The addition is relatively easy and cost effective.

Originality/value

The paper proves the significance of incorporation of nanosilica on original properties of polyurethane coatings and widens the area of applications of two component polyurethane coatings from acrylic polyol by strengthening them in their properties. The coatings can be applicable in high performance topcoats especially for automotive topcoats.

Article
Publication date: 1 February 1995

Additions for use in polyurethane coatings. Angus Chemie GmbH has announced the introduction of two new additions to its product line for polyurethane coatings. Zoldine RD‐20…

Abstract

Additions for use in polyurethane coatings. Angus Chemie GmbH has announced the introduction of two new additions to its product line for polyurethane coatings. Zoldine RD‐20 Reactive Diluent is designed to replace higher viscosity polyols in high solids polyurethane coatings. Zoldine MS‐Plus Moisture Scavenger eliminates bubbles, pinholes, downglossing and hazing in polyurethane coatings to allow for fast cure times in all types of weather.

Details

Pigment & Resin Technology, vol. 24 no. 2
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 1 April 1999

Kalyan Ghosh, Patricia Garcia and Ernest Galgoci

Reports results from studies conducted on a polyfunctional amine adduct epoxy curing agent (EPI‐CURE DPC‐3293) as a means to design low temperature cure coatings. Through the…

1159

Abstract

Reports results from studies conducted on a polyfunctional amine adduct epoxy curing agent (EPI‐CURE DPC‐3293) as a means to design low temperature cure coatings. Through the judicious choice of epoxide resins and amine‐functional curing agents, relatively fast reaction rates and resistance to moisture and humidity are maintained under low‐temperature cure conditions, and that is evidenced by a good balance of performance properties of coating films. We have used differential scanning calorimetry (DSC) to study the extent of reaction as well as the glass transition temperatures (Tg). Electrochemical impedance spectroscopy (EIS) has been used to predict the barrier properties of coating films. These results are compared with epoxide resins cured with a phenalkamine curing agent to illustrate some of the unique advantages of using multifunctional amine adduct curing agents for the curing of epoxide resins under sub‐ambient cure conditions for a multitude of end‐use applications.

Details

Anti-Corrosion Methods and Materials, vol. 46 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 3 November 2014

N.A. Mat Nor, L. Ismail, S.K.M. Jamari, K. Ramesh, B. Vengadaesvaran and A.K. Arof

This paper aims to analyse the coating behaviour in corrosion environment as well as to evaluate the best percentage amount of copper oxide and copper needed for organic coating

Abstract

Purpose

This paper aims to analyse the coating behaviour in corrosion environment as well as to evaluate the best percentage amount of copper oxide and copper needed for organic coating in order to prevent the corrosion degradation. Electrochemical impedance spectroscopy (EIS) studies have been conducted in order to evaluate the corrosion performance of polyester-epoxy-copper oxide and polyester-epoxy-copper coating systems.

Design/methodology/approach

The availability of this modem instruments is used to obtain impedance data as well as computer programs to interpret the results that made the technique popular. In addition, EIS is well suited to the study of polymer-coated metals.

Findings

The results showed that samples containing 25 weight per cent of copper oxide and copper (90P25CuO and 90P25Cu) obtained the excellent corrosion properties from the first day up to 30 days of NaCl immersion. The highest corrosion resistance values obtained by 90P25CuO and 90P25Cu on the 30th day were 7.107 × 108 O and 5.701 × 108 O, respectively, with lower double layer capacitance of 1.407 × 10−9 Farad and 3.935 × 10−9 Farad, respectively. Moreover, the water uptake gained by these two coating samples was the lowest at the end of immersion, which was 0.0084 for 90P25CuO and 0.1592 for 90P25Cu, showing that the sample has good corrosion performance.

Originality/value

This paper discussed on the highest corrosion resistance, double layer capacitance and the water uptake of the copper (Cu) and copper oxide (CuO) coating system obtained from the EIS measurements.

Details

Pigment & Resin Technology, vol. 43 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 19 August 2022

Yuting Lu, Wanwan Fu, hao Ren, Shifang Wu, Jiesheng Liu and Hao Peng

The purpose of this paper is to develop a high-performance composite emulsion cement waterproof coating. The coating has excellent durability and is effective in protecting cement…

Abstract

Purpose

The purpose of this paper is to develop a high-performance composite emulsion cement waterproof coating. The coating has excellent durability and is effective in protecting cement mortar substrates from harmful ions.

Design/methodology/approach

The polymer cement waterproof coatings with different emulsion compounding ratios were tested for mechanical properties and water resistance after alkali immersion, water immersion, thermal aging and UV aging, and the coatings were analyzed by infrared spectroscopy after aging to evaluate its durability. Meanwhile, the coating that presents favorable durability was applied to cement mortar test blocks. The protective effect of the coating on the test blocks was tested by immersion method, and X-ray diffraction analysis was performed on the eroded test blocks.

Findings

The coating with neoprene latex/acrylate latex weight ratio of 90/10 presents favorable durability and has superior overall performance. Besides, when it is applied to cement mortar blocks, the coatings effectively reduced the erosive effect of harmful ions on cement mortar blocks, resulting in much lower mass change ratios and less internal structural damage of the blocks significantly.

Originality/value

The obtained coating will be of great application potential for use in building waterproofing construction. Moreover, the coating can practically prevent chloride ions and sulfate ions from penetrating cement-based materials.

Details

Pigment & Resin Technology, vol. 53 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 February 1994

Making Fine Powders ‐ Extremely fine and uniform particles, of 5–50 nanometers, have been produced by a process being developed at Battelle Pacific Northwest Laboratories…

Abstract

Making Fine Powders ‐ Extremely fine and uniform particles, of 5–50 nanometers, have been produced by a process being developed at Battelle Pacific Northwest Laboratories. Researchers have used the technique to synthesize new, highly dispersed catalysts with a high surface area. It offers a way to make other products which have improved properties: ceramic ball bearings and gears which are stronger and more durable than those available today, and pigments for paints and inks.

Details

Pigment & Resin Technology, vol. 23 no. 2
Type: Research Article
ISSN: 0369-9420

Content available
Article
Publication date: 4 July 2008

96

Abstract

Details

Pigment & Resin Technology, vol. 37 no. 4
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 5 September 2016

Dawei Zhang, Haiyang Li, Hongchang Qian, Luntao Wang and Xiaogang Li

This study aims to construct a double layer heat insulation coating based on hollow glass microspheres (HGMs) and to investigate the effect of particle size on barrier property…

Abstract

Purpose

This study aims to construct a double layer heat insulation coating based on hollow glass microspheres (HGMs) and to investigate the effect of particle size on barrier property and heat insulation performance.

Design/methodology/approach

The waterborne double layer coating was composed of an anticorrosive epoxy ester primer and an HGM-containing silicone acrylic topcoat. With varied HGM sizes (20 μm, 40 μm, 60 μm and a 1:3 w/w mixture of 20 and 60 μm particles), the coating was immersed in 3.5 wt% NaCl solution for 28 days and was then subjected to a salt spray test for 450 h. The barrier properties of the coating were evaluated through electrochemical impedance spectroscopy. Heat insulation performance was examined using a self-made device.

Findings

The addition of HGMs decreased the barrier properties of the coating by creating particle/resin interfaces for water penetration. In the HGMs-containing coatings, the use of larger HGMs showed relatively good barrier properties because of the lower particle density. The coating with smaller particles yielded a higher heat insulating capacity as indicated by lower equilibrium temperatures.

Research limitations/implications

Future work will be focused on improving the barrier properties of the coating. Field exposure tests should also be performed to assess the long-term performance of the coating.

Practical implications

The mechanical properties of the coatings in this study also implied that HGMs can be used to develop scratch-resistant and impact-resistant coatings. Other potential applications for further studies include the uses of HGMs for coatings with improved fire retardancy and electromagnetic interference shielding.

Originality/value

A double layer coating was developed to provide balanced performance on both anticorrosion and heat insulation. The effects of HGM size were particularly highlighted.

Details

Pigment & Resin Technology, vol. 45 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of over 8000