Search results

1 – 10 of over 1000
Article
Publication date: 1 December 1999

James S. Bogard, Katherine L. Yuracko, Michael E. Murray, Richard A. Lowden and Norm L. Vaughn

Life‐cycle analysis (LCA) provides a general framework for assessing and summarizing all of the information important to a decision. LCA has been used to analyze the desirability…

Abstract

Life‐cycle analysis (LCA) provides a general framework for assessing and summarizing all of the information important to a decision. LCA has been used to analyze the desirability of replacing lead (Pb) with a composite of tungsten (W) and tin (Sn) in projectile slugs used in small arms ammunition at US Department of Energy (DOE) training facilities for security personnel. The analysis includes consideration of costs, performance, environmental and human health impacts, availability of raw materials, and stakeholder acceptance. Projectiles developed by researchers at Oak Ridge National Laboratory (ORNL) using a composite of tungsten and tin are shown to perform as well as, or better than, those fabricated using lead. A cost analysis shows that tungsten‐tin is less costly to use than lead, since, for the current number of rounds used annually, the higher tungsten‐tin purchase price is small compared with higher maintenance costs associated with lead. The tungsten‐tin composite presents a much smaller potential for adverse human health and environmental impacts than lead. Only a small fraction of the world’s tungsten production occurs in the USA, however, and market‐economy countries account for only around 15 per cent of world tungsten production. Concludes that stakeholders would prefer tungsten‐tin on the basis of total cost, performance, reduced environmental impact and lower human toxicity. However, lead is preferable on the basis of material availability. Life cycle analysis clearly shows that advantages outweigh disadvantages in replacing lead with tungsten‐tin in small‐caliber projectiles at DOE training facilities. Concerns about the availability of raw tungsten are mitigated by the ease of converting back to lead (if necessary) and the recyclability of tungsten‐tin rounds.

Details

Environmental Management and Health, vol. 10 no. 5
Type: Research Article
ISSN: 0956-6163

Keywords

Article
Publication date: 1 March 1942

TO make alloy steel we draw almost entirely upon material from outside the United States. We produce our own molybdenum. Our nickel comes from Canada and so does a part of our…

Abstract

TO make alloy steel we draw almost entirely upon material from outside the United States. We produce our own molybdenum. Our nickel comes from Canada and so does a part of our copper. Manganese and chromium are nearly all imported. We produce some tungsten and substantial amounts of vanadium. Tin, columbium and other vital materials are imported.

Details

Aircraft Engineering and Aerospace Technology, vol. 14 no. 3
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 September 1985

Jonathan S. Kieman

THE introduction of tungsten carbide as a suitable material for precision gauge blocks began almost by accident.

Abstract

THE introduction of tungsten carbide as a suitable material for precision gauge blocks began almost by accident.

Details

Aircraft Engineering and Aerospace Technology, vol. 57 no. 9
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 19 July 2021

Ark Ifeanyi, Patrick Isherwood and Aminat Olawumi Abdul-Lateef

Even though copper–tungsten has shown signs of potentials, relatively little is currently known about its appropriateness for photovoltaic application. This paper aims to evaluate…

Abstract

Purpose

Even though copper–tungsten has shown signs of potentials, relatively little is currently known about its appropriateness for photovoltaic application. This paper aims to evaluate the suitability of copper-tungs oxides as photovoltaic absorbers while investigating the consequences of oxygen content variation.

Design/methodology/approach

Using profilometry, Hall measurements, Seebeck test and spectrophotometry, grown samples were defined. Samples of 5 standard cubic centimeters per minute (sccm) and 7 sccm exhibited appropriate characteristics and were further tested using personal computer one dimension (PC1D) computational simulation at the system stage. To grow materials with an average thickness below 0.45 µm, magnetron co-sputtering was used. Three sample sets, varied by oxygen flow rate, were made with flow rates of 5sccm, 7sccm and 9sccm, respectively.

Findings

Some samples proved to be effective absorbers, using a cadmium telluride device as the criterion of output calculation, with one sample chosen as ideal for each type of flow rate. For the chosen samples, an optimum thickness was also obtained, i. It was discovered that thinner cells, optimal for both groups with 0.6 µm, performed better to than other thicknesses.

Research limitations/implications

The material also demonstrated prospects for applications in window layers, but more needs to be known.

Practical implications

Thin film material properties and their operating processes are relatively complex, so it is important to find simple and cost-effective ways to forecast performance. While relatively new, numerical modeling has proven to be very useful in defining the critical properties of thin film devices, thereby helpful for predictions of performance. Solar cell capacitance simulator one dimension, amorphous semiconductor analysis, personal computer one dimension (PC1D), analysis of micro-electronic and photonic structures and automat for simulation for heterostructures (33) are several common models in the thin film industry. Due to its availability and relative ease of use, PC1D was used in this project.

Social implications

As the search for the balance among performance, cost, reliability and availability continue, more absorber components continue to evolve, notably from the chalcogenides. Because of their ability to absorb light, ternary transition metal chalcogenides are useful in the production of hydrogen and in the energy storage sector, as well as in the production of light-emitting diodes and solar photovoltaic (PV).

Originality/value

There are several methods for the manufacture of copper–tungsten alloys, but the process of combinatorial sputtering of magnetrons provides satisfactory results even for the manufacture of various other materials. Cu2WSe4, an excellent alternative to sputtering, is one of the very few copper–tungsten selenide materials tested, synthesized by hot simple injection to have strong crystallinity and lacks impurity. The optical properties of colloidal Cu2WSe4 show that Schottky diode–like behaviors are present in the material, suggesting its potential for use in solar cells. Cu-W alloys could have a lot more to give the PV industry, by all indications. Further exploration of the oxides by this work is thus justified. Transparent conducting oxides, interfacial layers or charge-transporting compounds are commonly used as transition metal oxides. Nevertheless, as absorbers, metal oxides such as BiFeO3 and the traditionally highly studied Cu2O have been tested, with Cu2O showing a conversion efficiency of up to 10% under particular conditions. This displays strong electronic and optical properties, so there might be some possibility of studying other PV absorption metal oxides. The optical properties of colloidal Cu2WSe4 show that Schottky diode–like behaviors are present in the material, suggesting its potential for use in solar cells.

Details

World Journal of Engineering, vol. 19 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 19 April 2022

V. Pranay and S.K. Panigrahi

The purpose of this study is to design and develop new spiral head projectiles undergoing ballistics impact.

52

Abstract

Purpose

The purpose of this study is to design and develop new spiral head projectiles undergoing ballistics impact.

Design/methodology/approach

The introduction of the rifled barrel in firearms made projectile spin during its flight path. The central translational velocity (impact velocity) is one parameter to defeat/penetrate the target in the penetration process. Another important parameter considered to be the shape of the projectile. Many types of projectile shapes have been designed to defeat the target. In the recent years, ogival nose shape is one of the well-known projectile shapes in use abundantly. The present research is made to design the nose shape so as to use the spin during the penetration of target effectively. In this study, a new spiral head projectile shape is proposed and designed, which uses the rotation of projectile (spin) for penetrating the Al7075-T6 target. When the ogive and new spiral head projectile is impacted on Al 7075-T6 target of 12.5 mm, 18 mm thicknesses at ordnance velocities, the residual velocity is evaluated numerically using ANSYS/Explicit Dynamics at normal impact condition. Two projectile materials, steel 4340 and tungsten alloy, are used as projectile materials. Along with the translational velocity, rotation velocities (spin rate) 13,000, 26,000 and 52,000 rad/s also provided to projectile. The residual velocities verses spin rate are plotted for different spiral angle projectiles for impact velocities 1,000–1,500 m/s, at normal impact conditions on the Al 7075-T6 target. Compared with the ogive nose projectile, the proposed new spiral head projectile made of tungsten alloy is significantly effective.

Findings

Spiral head projectile having tungsten alloy material gives encouraging results at 12.5 mm target thickness. The new spiral head projectile is damaged partially. At 18 mm target thickness impact conditions, it is observed that the projectile head is completely damaged. The effectiveness of spiral head projectile on a target plate thickness of 18 mm is considered to study the impact condition.

Research limitations/implications

All the above results need to be experimentally verified. However, the basic numerical model used in the present study, i.e. the basic ogive nose numerical model with only translational energy, is well validated with penetration theory available in literatures.

Practical implications

The designed new spiral head projectile is only effective with tungsten alloy material within considered design parameters. For steel 4340 material, the spiral head projectile is less effective than the ogive nose projectile. In tungsten alloy projectiles, by observing all considered spiral angles, 30-degree spiral angle projectile gives the best performance at most of the considered impact velocity conditions.

Originality/value

The proposed research outputs are original, innovative and, have lot of importance in defence applications particularly in arms and ammunitions.

Details

International Journal of Structural Integrity, vol. 13 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 6 May 2020

Ramakant Rana, Qasim Murtaza and R.S. Walia

In this study, the tri-bological behaviour of the un-coated and diamond coated tungsten carbide was evaluated using the pin-on-disc test rig. The same was also tested on a lathe…

Abstract

Purpose

In this study, the tri-bological behaviour of the un-coated and diamond coated tungsten carbide was evaluated using the pin-on-disc test rig. The same was also tested on a lathe machine tool. This paper aims to compare the tri-bological behaviour of coated tungsten carbide pin with un-coated tungsten carbide pin it also correlates the wear obtained from the two machines used.

Design/methodology/approach

Experiments were performed using L8 orthogonal array and results obtained on a pin-on-disc test rig under dry sliding process were optimized through a modern optimization technique i.e. genetic algorithm (GA). The response surface methodology model (L8 orthogonal array) formed the basis for the development of the GA model, which defines the conditions of minimum wear, minimum coefficient of friction and minimum surface roughness for the sliding process of the pin-on-disc test rig.

Findings

Implementation of the heuristic approach for optimization of input parameters for the combination of tool material used for the turning process. The initial approach involves tri-bological testing considering the same combination. The set of experiments further performed, inferred that the results were similar and that the diamond coating enhances the life of the tool.

Originality/value

Successfully synthesized the diamond coating on tungsten carbide tool material. Implantation of the heuristic approach, i.e. GA to tri-bological tests to identify the optimized level of input variables. Experimentation involves the tri-bological testing whose results were confirmed through performing experiments on the lathe machine tool.

Details

World Journal of Engineering, vol. 17 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 March 2009

Murugavel Rathinam, Ramesh Thillaigovindan and Prema Paramasivam

The temperature response of properties of Single crystal tungsten (111) at high temperature is still not been thoroughly understood. All the mechanical properties are temperature…

Abstract

The temperature response of properties of Single crystal tungsten (111) at high temperature is still not been thoroughly understood. All the mechanical properties are temperature dependent. The experiments are performed with tailor made Berkovich tip of radius 100 nm with temperatures of 373 K, 473 K and 623 K to study the behavior of Single crystal Tungsten at various temperatures. The new phenomena of material under the indenter bouncing back at the end of unloading were clearly noticed, due to the accumulation of high energy. One particularly interesting observation is the appearance of discrete plasticity during the unloading segment as evidenced by a displacement burst or pop‐in at ∼1 mN at elevated temperatures. It is also noted that the elastic recovery reduces at higher temperatures. The results for different temperatures are compared. Our experiments clearly show the periodic bursts and the softening effects. Pile up is observed. It is noticed that there is significant drop in hardness, elastic modulus and increase in displacement with increasing temperature. This softening phenomenon corresponds to the increase of indentation depth for the same loading conditions. Clear bursts are seen showing the nucleation of dislocations. At higher peak loads, the indentation contact in tungsten is not just elastic. Tungsten is chosen to illustrate the temperature dependence behaviour because of its isotropic elastic behaviour at low loads. This work attempts to explore the complete behaviour of metals at various temperatures, including the initial burst, the complete elastic recovery, the softening effect and the modulus and Hardness.

Details

Multidiscipline Modeling in Materials and Structures, vol. 5 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 9 April 2018

Ramesh S. and Jenarthanan M.P.

This study aims to focus on experimenting the performance of aluminum (Al) powder mixed electric discharge machining (PMEDM) of two different materials viz plastic mould die steel…

Abstract

Purpose

This study aims to focus on experimenting the performance of aluminum (Al) powder mixed electric discharge machining (PMEDM) of two different materials viz plastic mould die steel (AISI P20) and nickel-based super alloy (Nimonic 75). This experimental study also focuses on using three different tool materials such as copper, brass and tungsten to analyze their influence on the process output. These materials find many uses in industrial as well as aerospace applications. The performance measures considered in this work are material removal rate (MRR), tool wear rate (TWR) and surface roughness (SR).

Design/methodology/approach

The experimental design used in this work is based on Taguchi’s L18 orthogonal array. Besides considering work and tool material as one of the process variables, other process variables are peak current (Ip), pulse on time (Ton) and concentration of powder (Cp). The analysis of variance (ANOVA) is performed on the experimental data to determine the significant variables that influence the output.

Findings

It is found that copper produced maximum MRR and brass tool exhibited higher TWR. However, the surface finish of the machined work piece was very much improved by using the brass tool. Though the performance of tungsten tool lies between the above two tool materials, it showed very little wear during EDM with or without the addition of Al powder.

Originality/value

The experimental investigation of PMEDM of nickel-based super alloy (Nimonic 75) has not been attempted before. Besides that, the study on the influence of tungsten tool on the performance of EDM is also very limited.

Details

World Journal of Engineering, vol. 15 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 April 2018

Ramesh S., M.P. Jenarthanan and Bhuvanesh Kanna A.S.

The purpose of this paper is to investigate the performance of powder-mixed electric discharge machining (PMEDM) using three different powders which are aluminium (Al), silicon…

Abstract

Purpose

The purpose of this paper is to investigate the performance of powder-mixed electric discharge machining (PMEDM) using three different powders which are aluminium (Al), silicon carbide (SiC) and aluminium oxide (Al2O3). Besides that, the influence of different tool materials was also studied in this experimental investigation. Hence, the work material selected for this purpose was AISI P20 steel and tool materials were copper, brass and tungsten. The performance measures considered in this work were material removal rate (MRR), tool wear rate and radial over cut (ROC).

Design/methodology/approach

The process variables considered in this study were powder types, powder concentration, tool materials, peak current and pulse on time. The experimental design, based on Taguchi’s L27 orthogonal array, was adopted to conduct experiments. Significant parameters were identified by performing the analysis of variance on the experimental data.

Findings

Based on the analysis of results, it was observed that copper tool combined with Al powder produced maximum MRR (58.35 mm3/min). Similarly, the Al2O3 powder combined with tungsten tool has resulted least ROC (0.04865 mm). It was also observed that wear rate of tungsten tool was very low (0.0145 mm3/min).

Originality/value

The experimental investigation of PMEDM involving three different powders (Al, SiC and Al2O3) was not attempted before. Moreover, the study of influence of different tool materials (Cu, brass and W) together with the different powders on the electric discharge machining performance was very limited.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 July 1946

G. Fitzgerald‐Lee

THIS paper shows briefly the origins and development of a comparatively new and certainly important branch of engineering science. For many years the alloys of the light metals…

Abstract

THIS paper shows briefly the origins and development of a comparatively new and certainly important branch of engineering science. For many years the alloys of the light metals, particularly of aluminium and magnesium, have been developed, until the term “light alloys” has come to be generally accepted as indicating the alloys of the light metals or any metallic alloy having a density of less than about 3·8. Towards the other end of the density scale are now being developed alloys of the heavy metals, mainly tungsten and tantalum. The techniques of production and manufacture of these two groups are very different: whereas the light alloys are produced and manipulated mainly by melting, casting, annealing, and forging, the heavy alloys are produced by various processes of powder metallurgy, resulting in substances with densities of 15 or more.

Details

Aircraft Engineering and Aerospace Technology, vol. 18 no. 7
Type: Research Article
ISSN: 0002-2667

1 – 10 of over 1000