Search results

1 – 10 of over 25000
Article
Publication date: 1 March 1996

M.L. Boubakar, L. Boulmane and J.C. Gelin

Addresses the computational aspects involved in the numerical simulation of sheet stamping processes. Focuses on some numerical aspects of the intrinsic complexity of these…

Abstract

Addresses the computational aspects involved in the numerical simulation of sheet stamping processes. Focuses on some numerical aspects of the intrinsic complexity of these problems, the first of which is the necessity to take into account properly membrane and bending effects. Presents a well‐adapted shell element. The second aspect concerns the description and the implementation of the initial orthotropic plastic behaviour for sheet metal parts, based on a formulation in a rotating frame using the initial microstructure rotation. The stress calculation algorithm is based on a particular implementation of the elastic predictor‐plastic corrector method. The last aspect concerns the solution procedures with a particular development concerning the treatment of the blankholder load as a constraint. A set of computational results validated with experiments prove the accuracy of the proposed approach in solving stamping problems.

Details

Engineering Computations, vol. 13 no. 2/3/4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 December 2021

Xin Feng, Xu Wang and Tianjiao Wang

The purpose of this research is to investigate the time structure characteristics of collaborative knowledge production behaviors in Q&A (question-and-answer) communities for…

Abstract

Purpose

The purpose of this research is to investigate the time structure characteristics of collaborative knowledge production behaviors in Q&A (question-and-answer) communities for explicit and tacit knowledge, and systematically investigate the supply side and the demand side of knowledge production.

Design/methodology/approach

Taking Zhihu as the research object, using the methods of recurrence plot and recurrence quantification analysis, this paper analyzes the recursive characteristics of the motion trajectories of the three behavioral sequences of questioning, answering, and discussion, qualitatively and quantitatively analyzing the generation and evolution mechanism of explicit and tacit knowledge.

Findings

The results show that compared with the demand-side behavior sequence, the supply-side behavior sequence exhibits higher stability, complexity and periodicity. Compared with the tacit knowledge topics, the demand-side behavior sequence of the explicit knowledge topics shows stronger nonlinearity, and the supply-side behavior sequence shows lower complexity.

Originality/value

The research conclusions provide preliminary evidence for the effectiveness of the recurrence plot method in distinguishing different types of knowledge production behaviors and have important application value for the “crowdsourcing” knowledge generation and identification under the knowledge economy and the sustainable development of the socialized question-and-answer community.

Details

Aslib Journal of Information Management, vol. 74 no. 3
Type: Research Article
ISSN: 2050-3806

Keywords

Article
Publication date: 28 May 2020

M. Ángeles López-Cabarcos, Suresh Srinivasan and Paula Vázquez-Rodríguez

By fusing knowledge-based theory, organizational learning theory and dynamics capability theory, this study aims to explore, on the one hand, the linkage between exploration…

2441

Abstract

Purpose

By fusing knowledge-based theory, organizational learning theory and dynamics capability theory, this study aims to explore, on the one hand, the linkage between exploration, sensing and tacit knowledge, and on the other hand, exploitation, seizing and explicit knowledge. Thereby, it argues that not only tacit knowledge but also explicit knowledge contributes to competitive advantage for firms. This study also investigates how knowledge transforms into profitability.

Design/methodology/approach

The conceptual model is tested with a study sample of 153 industrial organizations using structural equation modelling.

Findings

Results confirm the importance of both tacit and explicit knowledge for achieving sustainable competitive advantages. Furthermore, both tacit and explicit knowledge transform into profitability, both directly and through product innovation and customer centricity which play partial mediating roles.

Practical implications

Explicit knowledge strategies can be easier to manage, implement and institutionalize than tacit knowledge strategies, which require human component and intervention to succeed. Managers should hence first implement explicit knowledge strategies to gain expeditious results. Further, with the advent of digital technologies and algorithms that can extract deep customer insights and organizational experiences which are highly tacit in nature and codifying the same into explicit knowledge, the importance of explicit knowledge is further enlarged.

Originality/value

By fusing three adjacent theories to establish a robust model specification, this study is able to demonstrate the contribution of explicit knowledge in the firm’s competitive advantages.

Details

Journal of Knowledge Management, vol. 24 no. 5
Type: Research Article
ISSN: 1367-3270

Keywords

Article
Publication date: 25 February 2020

Shengquan Wang, Chao Wang, Yong Cai and Guangyao Li

The purpose of this paper is to improve the computational speed of solving nonlinear dynamics by using parallel methods and mixed-precision algorithm on graphic processing units…

Abstract

Purpose

The purpose of this paper is to improve the computational speed of solving nonlinear dynamics by using parallel methods and mixed-precision algorithm on graphic processing units (GPUs). The computational efficiency of traditional central processing units (CPUs)-based computer aided engineering software has been difficult to satisfy the needs of scientific research and practical engineering, especially for nonlinear dynamic problems. Besides, when calculations are performed on GPUs, double-precision operations are slower than single-precision operations. So this paper implemented mixed precision for nonlinear dynamic problem simulation using Belytschko-Tsay (BT) shell element on GPU.

Design/methodology/approach

To minimize data transfer between heterogeneous architectures, the parallel computation of the fully explicit finite element (FE) calculation is realized using a vectorized thread-level parallelism algorithm. An asynchronous data transmission strategy and a novel dependency relationship link-based method, for efficiently solving parallel explicit shell element equations, are used to improve the GPU utilization ratio. Finally, this paper implements mixed precision for nonlinear dynamic problems simulation using the BT shell element on a GPU and compare it to the CPU-based serially executed program and a GPU-based double-precision parallel computing program.

Findings

For a car body model containing approximately 5.3 million degrees of freedom, the computational speed is improved 25 times over CPU sequential computation, and approximately 10% over double-precision parallel computing method. The accuracy error of the mixed-precision computation is small and can satisfy the requirements of practical engineering problems.

Originality/value

This paper realized a novel FE parallel computing procedure for nonlinear dynamic problems using mixed-precision algorithm on CPU-GPU platform. Compared with the CPU serial program, the program implemented in this article obtains a 25 times acceleration ratio when calculating the model of 883,168 elements, which greatly improves the calculation speed for solving nonlinear dynamic problems.

Details

Engineering Computations, vol. 37 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 2003

Jaroslav Mackerle

This paper gives a bibliographical review of the finite element and boundary element parallel processing techniques from the theoretical and application points of view. Topics…

1205

Abstract

This paper gives a bibliographical review of the finite element and boundary element parallel processing techniques from the theoretical and application points of view. Topics include: theory – domain decomposition/partitioning, load balancing, parallel solvers/algorithms, parallel mesh generation, adaptive methods, and visualization/graphics; applications – structural mechanics problems, dynamic problems, material/geometrical non‐linear problems, contact problems, fracture mechanics, field problems, coupled problems, sensitivity and optimization, and other problems; hardware and software environments – hardware environments, programming techniques, and software development and presentations. The bibliography at the end of this paper contains 850 references to papers, conference proceedings and theses/dissertations dealing with presented subjects that were published between 1996 and 2002.

Details

Engineering Computations, vol. 20 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 1997

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…

6042

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.

Details

Engineering Computations, vol. 14 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 19 April 2022

V. Pranay and S.K. Panigrahi

The purpose of this study is to design and develop new spiral head projectiles undergoing ballistics impact.

52

Abstract

Purpose

The purpose of this study is to design and develop new spiral head projectiles undergoing ballistics impact.

Design/methodology/approach

The introduction of the rifled barrel in firearms made projectile spin during its flight path. The central translational velocity (impact velocity) is one parameter to defeat/penetrate the target in the penetration process. Another important parameter considered to be the shape of the projectile. Many types of projectile shapes have been designed to defeat the target. In the recent years, ogival nose shape is one of the well-known projectile shapes in use abundantly. The present research is made to design the nose shape so as to use the spin during the penetration of target effectively. In this study, a new spiral head projectile shape is proposed and designed, which uses the rotation of projectile (spin) for penetrating the Al7075-T6 target. When the ogive and new spiral head projectile is impacted on Al 7075-T6 target of 12.5 mm, 18 mm thicknesses at ordnance velocities, the residual velocity is evaluated numerically using ANSYS/Explicit Dynamics at normal impact condition. Two projectile materials, steel 4340 and tungsten alloy, are used as projectile materials. Along with the translational velocity, rotation velocities (spin rate) 13,000, 26,000 and 52,000 rad/s also provided to projectile. The residual velocities verses spin rate are plotted for different spiral angle projectiles for impact velocities 1,000–1,500 m/s, at normal impact conditions on the Al 7075-T6 target. Compared with the ogive nose projectile, the proposed new spiral head projectile made of tungsten alloy is significantly effective.

Findings

Spiral head projectile having tungsten alloy material gives encouraging results at 12.5 mm target thickness. The new spiral head projectile is damaged partially. At 18 mm target thickness impact conditions, it is observed that the projectile head is completely damaged. The effectiveness of spiral head projectile on a target plate thickness of 18 mm is considered to study the impact condition.

Research limitations/implications

All the above results need to be experimentally verified. However, the basic numerical model used in the present study, i.e. the basic ogive nose numerical model with only translational energy, is well validated with penetration theory available in literatures.

Practical implications

The designed new spiral head projectile is only effective with tungsten alloy material within considered design parameters. For steel 4340 material, the spiral head projectile is less effective than the ogive nose projectile. In tungsten alloy projectiles, by observing all considered spiral angles, 30-degree spiral angle projectile gives the best performance at most of the considered impact velocity conditions.

Originality/value

The proposed research outputs are original, innovative and, have lot of importance in defence applications particularly in arms and ammunitions.

Details

International Journal of Structural Integrity, vol. 13 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Abstract

Details

Quantitative and Empirical Analysis of Nonlinear Dynamic Macromodels
Type: Book
ISBN: 978-0-44452-122-4

Article
Publication date: 5 May 2015

Jun Lin, Hakim Naceur, Daniel Coutellier and Abdel Laksimi

– The purpose of this paper is to present an efficient smoothed particle hydrodynamics (SPH) method particularly adapted for the geometrically nonlinear analysis of structures.

Abstract

Purpose

The purpose of this paper is to present an efficient smoothed particle hydrodynamics (SPH) method particularly adapted for the geometrically nonlinear analysis of structures.

Design/methodology/approach

In order to resolve the inconsistency phenomenon which systematically occurs in the standard SPH method at the domain’s boundaries of the studied structure, the classical kernel function and its spatial derivatives were modified by the use of Taylor series expansion. The well-known tensile instabilities inherent to the Eulerian SPH formulation were attenuated by the use of the Total Lagrangian Formulation (TLF).

Findings

In order to demonstrate the effectiveness of the present improved SPH method, several numerical applications involving geometrically nonlinear behaviors were carried out using the explicit dynamics scheme for the time integration of the PDEs. Comparisons of the obtained results using the present SPH model with analytical reference solutions and with those obtained using ABAQUS finite element (FE) commercial software, show its good accuracy and robustness.

Practical implications

An additional application including a multilayered composite structure and involving buckling and delamination was investigated using the present improved SPH model and the results are compared to the FE results, they confirmed both the efficiency and the accuracy of the proposed method.

Originality/value

An efficient 2D-continuum SPH model for the geometrically nonlinear analysis of thin and thick structures is proposed. Contrarily to the classical SPH approaches, here the constitutive material relations are used to link naturally the stresses and strains. The Total Lagrangian approach is investigated to alleviate the tensile instabilities problem, allowing at the same time to avoid the updating procedure of the neighboring particles search and therefore reducing CPU usage. The proposed approach is valid for isotropic and multilayered composites structures undergoing large transformations. CPU time savings and better results with the new 2D-continuum SPH formulation compared to the classical continuum SPH. The explicit dynamic scheme was used for time integration allowing a fast resolution algorithm even for highly nonlinear problems.

Details

Engineering Computations, vol. 32 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 April 1994

A. Huerta and F. Casadei

The arbitrary Lagrangian—Eulerian (ALE)formulation, which is already well established in the hydrodynamics andfluid‐structure interaction fields, is extended to materials…

Abstract

The arbitrary Lagrangian—Eulerian (ALE) formulation, which is already well established in the hydrodynamics and fluid‐structure interaction fields, is extended to materials with memory, namely, non‐ linear path‐dependent materials. Previous attempts to treat non‐ linear solid mechanics with the ALE description have, in common, the implicit interpolation technique employed. Obviously, this implies a numerical burden which may be uneconomical and may induce to give up this formulation, particularly in fast‐transient dynamics where explicit algorithms are usually employed. Here, several applications are presented to show that if adequate stress updating techniques are implemented, the ALE formulation could be much more competitive than classical Lagrangian computations when large deformations are present. Moreover, if the ALE technique is interpreted as a simple interpolation enrichment, adequate—in opposition to distorted or locally coarse—meshes are employed. Notice also that impossible computations (or at least very involved numerically) with a Lagrangian code are easily implementable in an ALE analysis. Finally, it is important to observe that the numerical examples shown range from a purely academic test to real engineering simulations. They show the effective applicability of this formulation to non‐linear solid mechanics and, in particular, to impact, coining or forming analysis.

1 – 10 of over 25000