Search results

1 – 10 of over 1000
Article
Publication date: 29 June 2023

He Chuang, Wang Fan, Liu Zhicheng and Kong Dejun

The purpose of this study is to investigate the effect of laser scanning speed (LSS) on the corrosive-tribological performance of Ni-60%WC coating in Wusu mine water, which was…

Abstract

Purpose

The purpose of this study is to investigate the effect of laser scanning speed (LSS) on the corrosive-tribological performance of Ni-60%WC coating in Wusu mine water, which was beneficial to improve the friction–wear performance of cylinder liner on water injection pump.

Design/methodology/approach

Ni-60%WC coatings were fabricated on 45 steel by laser cladding, and the microstructure and tribological performance was analyzed using a super depth of field microscope and ball-on-plate friction tester, and the wear mechanism was also discussed.

Findings

At room temperature (RT, 25 ± 2 °C), the average coefficients of friction of substrate and Ni-60%WC coatings fabricated at the LSS of 6, 10, 12 and 14 mm/s are 0.48 ± 0.08, 0.23 ± 0.01, 0.21 ± 0.05, 0.22 ± 0.02 and 0.25 ± 0.04, respectively, and the corresponding wear rates are 8.755 × 104, 4.525 × 103, 1.539 × 103, 1.957 × 103 and 2.743 × 103 µm3·s–1·N–1, respectively, showing that the coating fabricated at the LSS of 10 mm/s has best friction reduction and wear resistance. The wear mechanism of Ni-60%WC coating is abrasive wear, fatigue wear and oxidative wear, which is resulted from the WC particles with the high-hardness.

Originality/value

Ni-60%WC coatings were first applied for cylinder liner, and the effect of laser scanning speed on its tribological performance was investigated.

Details

Industrial Lubrication and Tribology, vol. 75 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 August 2014

Chunmei Zhao and Yingwu Yao

This paper aims to report a study of the influence of tungsten carbide (WC) nanoparticles on corrosion resistance properties of electroless nickel–phosphorus (Ni–P) coatings in…

Abstract

Purpose

This paper aims to report a study of the influence of tungsten carbide (WC) nanoparticles on corrosion resistance properties of electroless nickel–phosphorus (Ni–P) coatings in NaCl solution.

Design/methodology/approach

The morphology of Ni–P–WC nanocomposite coatings was observed by scanning electron microscopy (SEM). The anodic polarization curves, electrochemical impedance spectra (EIS) and weight loss measurements were used to study the corrosion resistance properties of Ni–P–WC nanocomposite coatings in NaCl solution.

Findings

The WC nanoparticles content in the coatings increased with the increase of its concentration in the bath, and the WC nanoparticles are uniformly distributed in Ni–P alloy matrix. The results showed that the incorporation of WC nanoparticles elevated the corrosion resistance properties of Ni–P alloy matrix.

Originality/value

This study shows that the corrosion resistance was improved by the addition of WC nanoparticles to the Ni–P alloy matrix.

Details

Anti-Corrosion Methods and Materials, vol. 61 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 11 July 2019

Eryong Liu, Yingxin Zhang, Xiang Wang, Zhixiang Zeng, Huiling Du and Hongmei Qin

This paper aims to improve the tribocorrosion properties of 316L, thus WC/Ni60 coated 316L was prepared by thermal spraying technique.

Abstract

Purpose

This paper aims to improve the tribocorrosion properties of 316L, thus WC/Ni60 coated 316L was prepared by thermal spraying technique.

Design/methodology/approach

Composition and microstructure of WC/Ni60 coating was investigated, and tribological properties of 316 L and WC/Ni60 coating were studied under dry sliding, deionized water and artificial seawater.

Findings

The results showed that WC/Ni60 coating was lamellar structure, and the phase composition consisted of γ-Ni solid solution, carbides and borides. Furthermore, the hardness and corrosion resistance of 316 L in static seawater and wear resistance in dry sliding were improved by WC reinforced nickel-based coating. Furthermore, tribocorrosion results demonstrated that wear resistance of WC/Ni60 coating was also significantly better than 316 L, especially for higher load at artificial seawater. The reason can be attributed to the fact that the passive film of WC/Ni60 coating consisted of tungsten carbide, Ni(OH)2 and FeOOH for WC/Ni60 coating and only FeOOH for 316 L.

Originality/value

According to this study, it can be concluded that WC phases acted as a role in resisting the wear damages. Meanwhile, Ni-based materials performed well in corrosion resistance. Thus, the combined-effect Ni-based alloys and WC phases in WC/Ni60 coating showed better tribocorrosion performance than 316 L.

Details

Industrial Lubrication and Tribology, vol. 71 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 November 2023

Wael Mostafa and Rob Dixon

Recent studies on the securities market’s differential pricing of earnings components have shown that cash flow from operations is more highly valued than total accruals and that…

Abstract

Purpose

Recent studies on the securities market’s differential pricing of earnings components have shown that cash flow from operations is more highly valued than total accruals and that moderate cash flow from operations has higher valuation than extreme total accruals. An interesting question that follows is whether these findings hold regarding the differential valuations of cash flow and current accruals. This study aims to extend prior research by addressing this issue in two ways. First, the authors examine the incremental information content of cash flow from operations beyond working capital from operations. Second, the authors assess the effect of extreme working capital from operations on the incremental information content of cash flow from operations. This study aims to extend prior research by addressing this issue in two ways.

Design/methodology/approach

This study adopts market-based accounting research to test its hypotheses and to achieve its objectives. Specifically, this study uses statistical associations between accounting data and stock returns to examine the incremental information content (value relevance) of cash flow and working capital from operations and the effect of extreme working capital from operations on the incremental information content of cash flow.

Findings

The results show that cash flow from operations is not more highly valued than current accruals (both being valued equivalently). However, moderate cash flow from operations has higher valuation than extreme current accruals (each is valued differently). Overall, these research findings indicate that cash flow becomes more important for valuation as accruals get “extreme”.

Practical implications

As accruals are unlikely to persist to be permanent across the years, these results can be interpreted as indicating that cash flow and accruals information are used jointly by investors, with one being more important than the other depending on the relative “extremeness” of each. Therefore, both are of value to the investor and both should be reported.

Originality/value

The paper contributes to the UK research on determining the preferred level of disaggregation of earnings components, i.e. operating cash flow, current accruals and non-current accruals. This would help investors to improve their investment and credit decisions.

Article
Publication date: 6 February 2023

Zagdbazar Davaadorj, Bolortuya Enkhtaivan and Jamie Weathers

The paper aims to investigate the imprinting effect on working capital (WC) management as higher-level managers' transition to chief executive officer (CEO) positions. This paper…

Abstract

Purpose

The paper aims to investigate the imprinting effect on working capital (WC) management as higher-level managers' transition to chief executive officer (CEO) positions. This paper proposes that WC management defined as a shorter cash conversion cycle (CCC) can be carried forward to the new firm when the managers are appointed as a CEO.

Design/methodology/approach

The authors employ a multivariate regression approach. The data in this study come from two sources: Execucomp which provides data for corporate managers of the largest 2,000 USA firms including S&P 1,500 US and Compustat which provides financial information of firms.

Findings

The authors find a positive imprinting effect of “new” CEOs on WC outcomes – proxied by the CCC. CCC shortens by approximately 16 days when CEOs are efficient managers at previous institutions, predominantly derived from improvements in inventory and payables. The effect is sensitive to individuals' age, familiarity with the industry and high-pressure circumstances.

Practical implications

The paper includes important implications of WC management for firms to consider, especially during economic crises when liquidity management is a priority.

Originality/value

This paper extends the literature on the imprinting effect on managerial decision-making. The paper offers evidence of cooperative yet dynamic efforts in managing WC during CEO turnover events, which are unique findings.

Details

International Journal of Managerial Finance, vol. 19 no. 5
Type: Research Article
ISSN: 1743-9132

Keywords

Article
Publication date: 1 February 2023

Sakti Ranjan Dash, Maheswar Sethi and Rabindra Kumar Swain

The purpose of this paper is to examine the impact of working capital management (WCM) on profitability under different financial conditions (constraint/unconstraint) and WCM…

Abstract

Purpose

The purpose of this paper is to examine the impact of working capital management (WCM) on profitability under different financial conditions (constraint/unconstraint) and WCM policy (aggressive/conservative). Furthermore, the study investigates the existence of optimal working capital levels under different financial conditions and WCM policy.

Design/methodology/approach

Two-step system generalized method of moments and fixed effect models are used to analyze the data collected from Prowess database from 2011 to 2020 for a sample of 1,104 Indian manufacturing companies.

Findings

The study finds an inverted U-shaped relationship between working capital and profitability in all financial conditions and working capital policy. This finding advocates the existence of an optimal level of working capital that equates the costs and benefits of holding working capital to maximize the companies’ profitability. However, holding working capital beyond the optimal level negatively affects profitability. Companies under financial constraints with aggressive working capital policies have the lowest optimal cash conversion cycle (CCC). Furthermore, the relationship of working capital with profitability and the optimal CCC varies owing to firm age and industry group.

Originality/value

To the best of the authors’ knowledge, this is the first paper that incorporates the impact of working capital on firm’s performance from both financial constraint (unconstraint) and aggressive (conservative) working capital policy perspectives in the Indian context. Furthermore, this study also contributes in terms of reflecting the effect of firm age and industry in determining the optimum CCC of the firms.

Details

Journal of Indian Business Research, vol. 15 no. 3
Type: Research Article
ISSN: 1755-4195

Keywords

Article
Publication date: 6 March 2023

Bibo Yao, Zhenhua Li, Baoren Teng and Jing Liu

Laser powder bed fusion (LPBF) can be used to fabricate complex extrusion die without the limitation of structures. Layer-by-layer processing leads to differences in…

Abstract

Purpose

Laser powder bed fusion (LPBF) can be used to fabricate complex extrusion die without the limitation of structures. Layer-by-layer processing leads to differences in microstructures and wear properties. This study aims to investigate the microstructure evolution and effects of tungsten carbide (WC) on the wear properties of LPBF-printed 18Ni300.

Design/methodology/approach

Economical spherical granulation-sintering-deoxygenation (GSD) WC-reinforced 18Ni300 steel matrix composites were produced by LPBF from powder mixtures of WC and 18Ni300. The effects of WC contents on anisotropic microstructures and wear properties of the composites were investigated.

Findings

The relative density is more than 99% for all the composites except 25% WC/18Ni300 composite. The grain sizes distributed on the top cross-section are smaller than those on the side cross-section. After adding WC particles, more high-angle grain boundaries and larger Schmid factor generate, and deformed grains decrease. With increasing WC contents, the hardness first decreases and then increases but the wear volume loss decreases. The side cross-section of the composite has higher hardness and better wear resistance. The 18Ni300 exhibits adhesive wear accompanying with abrasive wear, while plowing and fatigue wear are the predominant wear mechanisms of the composites.

Originality/value

Economical spherical GSD WC particles can be used to improve the wear resistance. The novel WC/18Ni300 composites are suitable for the application under the abrasive wear condition with low stress.

Details

Rapid Prototyping Journal, vol. 29 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 April 2023

Ronnarit Khuengpukheiw, Anurat Wisitsoraat and Charnnarong Saikaew

This paper aims to compare the wear behavior, surface roughness, friction coefficient and volume loss of high-velocity oxy-fuel (HVOF) sprayed WC–Co and WC–Cr3C2–Ni coatings on…

Abstract

Purpose

This paper aims to compare the wear behavior, surface roughness, friction coefficient and volume loss of high-velocity oxy-fuel (HVOF) sprayed WC–Co and WC–Cr3C2–Ni coatings on AISI 1095 steel with spraying times of 10 and 15 s.

Design/methodology/approach

In this study, the pin-on-disc testing technique was used to evaluate the wear characteristics at a speed of 0.24 m/s, load of 40 N and test time of 60 min under dry conditions at room temperature. The wear characteristics were examined and analyzed by scanning electron microscopy and energy dispersive X-ray spectroscopy. The surface roughness of a coated surface was measured, and microhardness measurements were performed on the cross-sectioned and polished surfaces of the coating.

Findings

Spraying time and powder material affected the hardness of HVOF coatings due to differences in the porosity of the coated layers. The average hardness of the WC–Cr3C2–Ni coating with a spaying time of 15 s was approximately 14% higher than that of the WC–Cr3C2–Ni coating with a spraying time of 10 s. Under an applied load of 40 N, the WC–Co coating with a spraying time of 15 s had the lowest variation in the friction coefficient compared with the other coatings. The WC–Co coating with a spraying time of 10 s had the lowest average and variation in volume loss compared to the other coatings. The WC–Cr3C2–Ni coating with a spraying time of 10 s exhibited the highest average volume loss. The wear features changed slightly with the spraying time owing to variations in the hardness and friction coefficient.

Originality/value

This study investigated tribological performance of WC–Co; WC-Cr3C2-Ni coatings with spraying times of 10 and 15 s using pin-on-disc tribometer by rotating the relatively soft pin (C45 steel) against hard coated substrate (disc).

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 14 December 2022

Runyao Yu, Xingwang Bai, Xueqi Yu and Haiou Zhang

A new wire arc additive manufacturing (WAAM) process combined with gravity-driven powder feeding was developed to fabricate components of tungsten carbide (WC)-reinforced iron…

235

Abstract

Purpose

A new wire arc additive manufacturing (WAAM) process combined with gravity-driven powder feeding was developed to fabricate components of tungsten carbide (WC)-reinforced iron matrix composites. The purpose of this study was to investigate the particle transportation mechanism during deposition and determine the effects of WC particle size on the microstructure and properties of the so-fabricated component.

Design/methodology/approach

Thin-walled samples were deposited by the new WAAM using two WC particles of different sizes. A series of in-depth investigations were conducted to reveal the differences in the macro morphology, microstructure, tensile performance and wear properties.

Findings

The results showed that inward convection and gravity were the main factors affecting WC transportation in the molten pool. Large WC particles have higher ability than small particles to penetrate into the molten pool and survive severe dissolution. Small WC particles were more likely to be completely dissolved around the top surface, forming a thicker region of reticulate (Fe, W)6C. Large WC particles can slow down the inward convection more, thereby leading to an increase in width and a decrease in the layer height of the weld bead. The mechanical properties and wear resistance significantly increased owing to reinforcement. Comparatively, samples with large WC particles showed inferior tensile properties owing to their higher susceptibility to cracks.

Originality/value

Fabricating metal matrix composites through the WAAM process is a novel concept that still requires further investigation. Apart from the self-designed gravity-driven powder feeding, the unique aspects of this study also include the revelation of the particle transportation mechanism of WC particles during deposition.

Details

Rapid Prototyping Journal, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 6 November 2017

Hyung Goun Joo, Kang Yong Lee, Guo Ming Luo and Da Quan Zhang

The purpose of this paper is to investigate the combined erosion and corrosion behavior of WC-Ni vacuum brazed coating.

Abstract

Purpose

The purpose of this paper is to investigate the combined erosion and corrosion behavior of WC-Ni vacuum brazed coating.

Design/methodology/approach

Al2O3 particles and 10 wt% NaCl solution are used to evaluate erosion and corrosion resistance of WC-Ni vacuum brazed coating. Combined test of erosion and corrosion is also conducted. The microstructure of each specimen is characterized by the scanning electron microscopy. The chemical composition was determined by energy-dispersive X-ray spectroscopy.

Findings

WC-Ni vacuum brazed coating layer is effective protective coating under combined erosion and corrosion environment. The weight loss of coating layer is more reduced as the cumulative test time.

Originality/value

WC-Ni vacuum brazed coatings are investigated to check characteristic of the combined erosion and corrosion environment. WC-Ni vacuum brazed coatings are kind of diffusion coating that attract attention because of the resistance of superb impact and corrosion in comparison with other coatings. Some previous researches reported the properties of vacuum brazed WC material. Erosion and corrosion behaviors of WC-Ni vacuum brazed coatings were studied in our previous research, respectively. Hence, in this research, the principal objective is to examine the combined erosion and corrosion behavior of WC-Ni vacuum brazed coating.

Details

Anti-Corrosion Methods and Materials, vol. 64 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of over 1000