Search results

1 – 10 of 348
Article
Publication date: 4 December 2018

Alireza Rahimi, Ali Dehghan Saee, Abbas Kasaeipoor and Emad Hasani Malekshah

The purpose of this paper is to carry out a comprehensive review of some latest studies devoted to natural convection phenomenon in the enclosures because of its significant…

1230

Abstract

Purpose

The purpose of this paper is to carry out a comprehensive review of some latest studies devoted to natural convection phenomenon in the enclosures because of its significant industrial applications.

Design/methodology/approach

Geometries of the enclosures have considerable influences on the heat transfer which will be important in energy consumption. The most useful geometries in engineering fields are treated in this literature, and their effects on the fluid flow and heat transfer are presented.

Findings

A great variety of geometries included with different physical and thermal boundary conditions, heat sources and fluid/nanofluid media are analyzed. Moreover, the results of different types of methods including experimental, analytical and numerical are obtained. Different natures of natural convection phenomenon including laminar, steady-state and transient, turbulent are covered. Overall, the present review enhances the insight of researchers into choosing the best geometry for thermal process.

Originality/value

A comprehensive review on the most practical geometries in the industrial application is performed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 October 2018

Mubbashar Nazeer, N. Ali and T. Javed

The main purpose of this study is to examine the effects of moving wall on the mixed convection flow and heat transfer in a right-angle triangular cavity filled with a micropolar…

Abstract

Purpose

The main purpose of this study is to examine the effects of moving wall on the mixed convection flow and heat transfer in a right-angle triangular cavity filled with a micropolar fluid.

Design/methodology/approach

It is assumed that the bottom wall is uniformly heated and the right inclined wall is cold, whereas the vertical wall is adiabatic and moving with upward/downward velocity v0/−v0, respectively. The micropolar fluid is considered to satisfy the Boussinesq approximation. The governing equations and boundary conditions are solved using the Galerkin finite element method. The Penalty method is used to eliminate the pressure term from the momentum equations. To accomplish the consistent solution, the value of the penalty parameter is taken 107. The simulations are performed for a wide range of Richardson number, micropolar parameter, Prandtl number and Reynolds number.

Findings

The results are presented in the form of streamlines, isotherms and variations of average Nusselt number and fluid flow rate depending on the Richardson number, Prandtl number, micropolar parameter and direction of the moving wall. The flow field and temperature distribution in the cavity are affected by these parameters. An average Nusselt number into the cavity in both cases increase with increasing Prandtl and Richardson numbers and decreases with increasing micropolar parameter, and it has a maximum value when the lid is moving in the downward direction for all the physical parameters.

Research limitations/implications

The present investigation is conducted for the steady, two-dimensional mixed convective flow in a right-angle triangular cavity filled with micropolar fluid. An extension of the present study with the effects of cavity inclination, square cavity, rectangular, trapezoidal and wavy cavity will be the interest of future work.

Originality/value

This work studies the effects of moving wall, micropolar parameter, Richardson number, Prandtl number and Reynolds number parameter in a right-angle triangular cavity filled with a micropolar fluid on the fluid flow and heat transfer. This study might be useful to flows of biological fluids in thin vessels, polymeric suspensions, liquid crystals, slurries, colloidal suspensions, exotic lubricants, solar engineering for construction of triangular solar collector, construction of thermal insulation structure and geophysical fluid mechanics, etc.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 November 2017

Mahmoud M. El-Gendi and Abdelraheem M. Aly

Boussinesq approximation is widely used in solving natural convection problems, but it has severe practical limitations. Using Boussinesq approximation, the temperature difference…

Abstract

Purpose

Boussinesq approximation is widely used in solving natural convection problems, but it has severe practical limitations. Using Boussinesq approximation, the temperature difference should be less than 28.6 K. The purpose of this study is to get rid of Boussinesq approximation and simulates the natural convection problems using an unsteady compressible Navier-Stokes solver. The gravity force is included in the source term. Three temperature differences are used namely 20 K, 700 K and 2000 K.

Design/methodology/approach

The calculations are carried out on the square and sinusoidal cavities. The results of low temperature difference have good agreement with the experimental and previous calculated data. It is found that, the high temperature difference has a significant effect on the density.

Findings

Due to mass conservation, the density variation affects the velocity distribution and its symmetry. On the other hand, the density variation has a negligible effect on the temperature distribution.

Originality/value

The present calculation method has no limitations but its convergence is slow. The current study can be used in fluid flow simulations for nuclear power applications in natural convection flows subjected to large temperature differences.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 September 2024

Abdelhak Daiz, Rachid Hidki, Redouane Fares and Zouhair Charqui

The purpose of this study is to analyze the free convection phenomena arising from a temperature disparity between a cold circular cylinder and a heated corrugated cylinder.

Abstract

Purpose

The purpose of this study is to analyze the free convection phenomena arising from a temperature disparity between a cold circular cylinder and a heated corrugated cylinder.

Design/methodology/approach

Numerical simulations were used to analyze the convection patterns. The inner cylinder, made of a thermally conductive solid material, was heated through its inner surface, while the space between the cylinders was filled with air. The governing equations for velocity, pressure and temperature were solved using a Galerkin finite element method-based solver for partial differential equations.

Findings

The study explored various parameters affecting the dynamic and thermal structure of the flow, including the Rayleigh number (103 ≤ Ra ≤ 106), the number of corrugations of the inner cylinder (3 ≤ N ≤ 18), the thermal conductivity of the hollow cylinder (1 ≤ K ≤ 200) and the angle of inclination of the inner cylinder (0° ≤ φ ≤ 90°). Results indicated a notable sensitivity of flow intensity to changes in the Rayleigh number and the inner cylinder’s inclination angle φ. Particularly, for Ra = 106, the average heat transfer rate increased by 203% with a K ratio increment from 1 to 100 but decreased by 16.3% as the number of corrugations increased from 3 to 18.

Originality/value

This research contributes to understanding the complex interplay between geometry, thermal properties and flow dynamics in natural convection systems involving cylindrical geometries. The findings offer useful insights for improving the transfer of heat procedures in real-world situations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 December 2003

Prodip Kumar Das, Shohel Mahmud, Syeda Humaira Tasnim and A.K.M. Sadrul Islam

A numerical simulation has been carried out to investigate the buoyancy induced flow and heat transfer characteristics inside a wavy walled enclosure. The enclosure consists of…

Abstract

A numerical simulation has been carried out to investigate the buoyancy induced flow and heat transfer characteristics inside a wavy walled enclosure. The enclosure consists of two parallel wavy and two straight walls. The top and the bottom walls are wavy and kept isothermal. Two straight‐vertical sidewalls are considered adiabatic. Governing equations are discretized using the control volume based finite‐volume method with collocated variable arrangement. Simulation was carried out for a range of surface waviness ratios, λ=0.00‐0.25; aspect ratios, A=0.25‐0.5; and Rayleigh numbers Ra=100‐107 for a fluid having Prandtl number equal to 1.0. Results are presented in the form of local and global Nusselt number distributions, streamlines, and isothermal lines for different values of surface waviness and aspect ratios. For a special case of λ=0 and A=1.0, the average Nusselt number distribution is compared with available reference. The results suggest that natural convection heat transfer is changed considerably when surface waviness changes and also depends on the aspect ratio of the domain. In addition to the heat transfer results, the heat transfer irreversibility in terms of Bejan number (Be) was measured. For a set of selected values of the parameters (λ, A, and Ra), a contour of the Bejan number is presented at the end of this paper.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 13 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 August 2022

Dipak Kumar Mandal, Nirmalendu Biswas, Nirmal K. Manna, Rama Subba Reddy Gorla and Ali J. Chamkha

This study aims to numerically examine the influence of various geometric parameters of a novel W-shaped porous cavity undergoing hybrid nanofluid-based magnetohydrodynamic mixed…

344

Abstract

Purpose

This study aims to numerically examine the influence of various geometric parameters of a novel W-shaped porous cavity undergoing hybrid nanofluid-based magnetohydrodynamic mixed convection. The W-shaped cavity is modified from the classical trapezoidal cavity by constructing a triangular shape at its bottom. This cavity is isothermally active at the bottom, with different numbers and heights of the triangular peak (or undulation). The heated hybrid nanofluid (Cu–Al2O3–H2O) flow is cooled through the translating top wall. Inclined sidewalls are thermally insulated. To compare the impacts of change in geometric parameters, a square cavity under similar boundary conditions is also simulated. This study is carried out systematically addressing the various influences from a range of parameters like side angles (γ), number (m) and height (λ) of the bottom undulation, Reynolds number (Re), Richardson number (Ri), Darcy number (Da), Hartmann number (Ha), hybrid nanoparticles volume fraction (φ) on the overall thermal performance of the cavity.

Design/methodology/approach

Applying the finite volume approach, the transport equations involving multiphysical conditions like porous substance, hybrid nanofluid, magnetic field and shearing force are solved numerically by using a written FORTRAN-based code following the SIMPLE algorithm. The algebraic equations are solved over all the control volumes in an iterative process using the alternate direction implicit scheme and the tri-diagonal matrix algorithm. The converged solution of the iterative process is obtained when the relative error levels satisfy the convergence criterion of 10–8 and 10–10 for the maximum residuals and the mass defect, respectively.

Findings

It is revealed that an increase in the bottom undulation height always improves the thermal energy transfer despite the reduction of fluid volume. Thermal energy transfer significantly depends on the heating and cooling surface lengths, fluid volume in the cavity and the magnitude of the bottom undulation height of the W-shaped cavity. With the increase in bottom undulation height, effective heating length increases by ∼28%, which leads to a ∼15% reduction in the effective volume of the working fluid and a gain in heat transfer by ∼56.48%. In general, the overall thermal energy transport is improved by increasing Re, Ri and Da; whereas it is suppressed by increasing Ha.

Research limitations/implications

There are many opportunities for future research experimentally or numerically, considering different curvature effects, orientations of the geometry, working fluids, boundary conditions, etc. Furthermore, this study could be extended by considering unsteady flow or turbulent flow.

Practical implications

In many modern systems/processes pertaining to materials processing, continuous casting, food processing, chemical reactors, biomedical applications, etc. fine control in the transport process is a major concern. The findings of this analysis can effectively be useful for other applications for getting more control features in terms of achieving the operational objectives. The approach of the system analysis (considering geometrical size parameters to delve into the underlying transport physics) and the obtained simulated results presented in the work can usefully be applicable to similar thermal systems/devices such as materials processing, thermal mixing, chemical reactors, heat exchangers, etc.

Originality/value

From the well-documented and vast pool of literature survey, it is understood that there exists no such investigation on the considered geometry and study. This study contributes a lot to understanding magnetic field moderated thermofluid flow of a hybrid nanofluid in a porous medium filled W-shaped cavity, in consideration of different geometrical shape parameters (undulation peak numbers at bottom wall, peak heights, side angles and heating and cooling length). Findings brought by this study provide great insights into the design and operation under various ranges of multiphysical thermofluid-flow processing phenomena.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 December 2023

Nirmal K. Manna, Abhinav Saha, Nirmalendu Biswas and Koushik Ghosh

The purpose of this study is to investigate the influence of enclosure shape on magnetohydrodynamic (MHD) nanofluidic flow, heat transfer and irreversibility in square, trapezoidal

Abstract

Purpose

The purpose of this study is to investigate the influence of enclosure shape on magnetohydrodynamic (MHD) nanofluidic flow, heat transfer and irreversibility in square, trapezoidal and triangular thermal systems under fluid volume constraints, with the aim of optimizing thermal behavior in diverse applications.

Design/methodology/approach

The study uses numerical simulations based on a finite element-based technique to analyze the effects of the Rayleigh number (Ra), Hartmann number (Ha), magnetic field orientation (γ) and nanoparticle concentration (ζ) on heat transfer characteristics and thermodynamic entropy production.

Findings

The key findings reveal that the geometrical design significantly influences fluid velocity, heat transfer and irreversibility. Trapezoidal thermal systems outperform square systems, while triangular systems achieve optimal enhancement. Nanoparticle concentration enhances heat transfer and flow strength at higher Rayleigh numbers. The magnetic field intensity has a significant impact on fluid flow and heat transport in natural convection, with higher Hartmann numbers resulting in reduced flow strength and heat transfer. The study also highlights the influence of various parameters on thermodynamic entropy production.

Research limitations/implications

Further research can explore additional geometries, parameters and boundary conditions to expand the understanding of enclosure shape effects on MHD nanofluidic flow and heat transfer. Experimental validation can complement the numerical simulations presented in this study.

Originality/value

This study provides valuable insights into the impact of enclosure shape on heat transfer performance in MHD nanofluid flow systems. The findings contribute to the optimization of thermal behavior in applications such as electronics cooling and energy systems. The comparison of different enclosure shapes and the analysis of thermodynamic entropy production add novelty to the study.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 June 2024

Arooj Tanveer, Sami Ul Haq, Muhammad Bilal Ashraf, Muhammad Usman Ashraf and R. Nawaz

This study aims to numerically investigate heat transport in a trapezoidal cavity using hybrid nanoparticles (Ag-$Al_2O_3$). Unlike previous studies, this one covers…

50

Abstract

Purpose

This study aims to numerically investigate heat transport in a trapezoidal cavity using hybrid nanoparticles (Ag-$Al_2O_3$). Unlike previous studies, this one covers magnetohydrodynamics, joule heating with viscous dissipation, heat absorption and generation. The left and right sides of the chasm are frigid. The upper wall heats, whereas the bottom wall remains adiabatic.

Design/methodology/approach

After reducing the system of dimensional equations to dimensionless equations, the authors use the Galerkin finite element method to solve them numerically. Geometric parameters affect heating efficiency; thus, the authors use flow metrics such as the Reynold number Re, magnetic parameter M, volume fraction coefficient, heat absorption and Eckert number Ec. The authors use the finite volume method to solve the governing equations after converting them to dimensionless form. The authors also try the artificial neural network method to predict the innovative cavity’s heat response in future scenarios. Transition state charts, regression analysis, MSE and error histograms accelerate, smooth and accurately converge solutions.

Findings

As the magnetic parameter and Eckert number increase, the enclosure emits more heat. As Reynold and volume fraction coefficients rise, the Nusselt number falls. It rose as magnetic, Eckert and heat absorption characteristics increased. The average Nusselt number rises with Reynolds and volume fraction coefficients. The magnetic, Eckert and heat absorption characteristics have inverse values.

Originality/value

This study numerically investigates heat transport in a trapezoidal cavity using hybrid nanoparticles (Ag-$Al_2O_3$). Unlike previous studies, this one covers MHD, joule heating with viscous dissipation, heat absorption and generation. The left and right sides of the chasm are frigid. The upper wall heats, whereas the bottom wall remains adiabatic.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 June 2017

Ammar I. Alsabery, Ishak Hashim, Ali J. Chamkha, Habibis Saleh and Bilal Chanane

This paper aims to study analytically and numerically the problem of transient natural convection heat transfer in a trapezoidal cavity with spatial side-wall temperature…

Abstract

Purpose

This paper aims to study analytically and numerically the problem of transient natural convection heat transfer in a trapezoidal cavity with spatial side-wall temperature variation.

Design/methodology/approach

The governing equations subject to the initial and boundary conditions are solved numerically by the finite difference scheme consisting of the alternating direction implicit method and the tri-diagonal matrix algorithm. The left sloping wall of the cavity is heated to non-uniform temperature, and the right sloping wall is maintained at a constant cold temperature, while the horizontal walls are kept adiabatic.

Findings

It is shown that the heat transfer rate increases in non-uniform heating increments, whereby low wave number values are more affected by the convection. The best heat transfer enhancement results from larger side wall inclination angle; however, trapezoidal cavities require longer time compared to that of square to reach steady state.

Originality/value

The study of natural convection heat transfer in a trapezoidal cavity filled with nanofluid and heated by spatial side-wall temperature has not yet been undertaken. Thus, the authors of the present study believe that this work is valuable.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 June 2017

T. Javed, Z. Mehmood and Ioan Pop

The purpose of this paper is to analyze numerical results for heat transfer through mixed convection in an incompressible steady lid-driven fluid flow inside a trapezoidal cavity

Abstract

Purpose

The purpose of this paper is to analyze numerical results for heat transfer through mixed convection in an incompressible steady lid-driven fluid flow inside a trapezoidal cavity in the presence of a uniform magnetic field.

Design/methodology/approach

In this study, the authors have considered three different cases, in which left and right walls of the cavity are tilted at different angles of 0, 30 and 45 degrees, respectively. Both left and right side walls of the cavity are taken cold and the upper wall is insulated and assumed moving with constant speed, whereas the bottom wall is considered to be heated uniformly/non-uniformly. To eliminate pressure term, penalty method is applied to governing Navier–Stokes’ equations. The reduced equations are solved by Galerkin weighted residual technique of finite element method. Grid-independent results are obtained and shown in terms of plots for streamlines, isotherms, Nusselt number and average Nusselt number for a wide range of flow parameters, including Rayleigh numbers Ra, Prandtl number Pr and Hartman number Ha.

Findings

It has been observed that the effects of moving lid become negligible for Ra = 100,000, whereas increasing Rayleigh number results in stronger streamline circulation and convection dominant effects inside the enclosure. Local Nusselt number Nu along the bottom wall is observed to be maximum at edges and it reduces while moving toward the center from edges, and attains minimum value at the center of the bottom wall.

Research limitations/implications

The problem is modeled for laminar and incompressible flow, induced magnetic field has been considered negligibly small and local thermal equilibrium has been assumed.

Originality/value

In this investigation, the authors have presented new and original results for mixed convection flow inside a lid-driven trapezoidal cavity under the influence of a magnetic field. Hence, this study would be important for the researchers working in the area of heat transfer in cavity flows involving magnetic effects to become familiar with the flow behavior and properties.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 348