Search results

1 – 10 of over 5000
Article
Publication date: 12 June 2017

Daphne Pantousa and Euripidis Mistakidis

The primary purpose of this paper is the development of a fire–structure interface (FSI) model, which is referred in this study as a simplified “dual-layer” model. It is oriented…

121

Abstract

Purpose

The primary purpose of this paper is the development of a fire–structure interface (FSI) model, which is referred in this study as a simplified “dual-layer” model. It is oriented for design purposes, in the cases where fire-compartments exceed the “regular” dimensions, as they are defined by the guidelines of the codes (EN 1991-1-2).

Design/methodology/approach

The model can be used at the post-processing stage of computational fluid dynamics (CFD) analysis and it is based on the gas-temperature field (spatial and temporal) of the fire-compartment. To use the “dual-layer” model, first the gas-temperature (discrete) function along the height of the fire-compartment, at discrete plan–view points should be determined through the output of the CFD analysis. The model “compresses” the point data to (spatial) virtual zones, which are divided into two layers (with respect to the height of the fire-compartment) of uniform temperature: the upper (hot) layer and the lower (cold) layer.

Findings

The model calculates the temporal evolution of the gas-temperature in the fire compartment in every virtual zone which is divided in two layers (hot and cold layer).

Originality/value

The main advantage of this methodology is that actually only three different variables (height of interface upper-layer temperature and lower-layer temperature) are exported during the post-processing stage of the CFD analysis, for every virtual zone. Next, the gas-temperature can be used for the determination of the temperature profile of structural members using simple models that are proposed in EN 1993-1-2.

Details

Engineering Computations, vol. 34 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 19 May 2022

Jiří Malík and Ondřej Souček

This paper aims to propose a semi-analytical benchmarking framework for enthalpy-based methods used in problems involving phase change with latent heat. The benchmark is based on…

Abstract

Purpose

This paper aims to propose a semi-analytical benchmarking framework for enthalpy-based methods used in problems involving phase change with latent heat. The benchmark is based on a class of semi-analytical solutions of spatially symmetric Stefan problems in an arbitrary spatial dimension. Via a public repository this study provides a finite element numerical code based on the FEniCS computational platform, which can be used to test and compare any method of choice with the (semi-)analytical solutions. As a particular demonstration, this paper uses the benchmark to test several standard temperature-based implementations of the enthalpy method and assesses their accuracy and stability with respect to the discretization parameters.

Design/methodology/approach

The class of spatially symmetric semi-analytical self-similar solutions to the Stefan problem is found for an arbitrary spatial dimension, connecting some of the known results in a unified manner, while providing the solutions’ existence and uniqueness. For two chosen standard semi-implicit temperature-based enthalpy methods, the numerical error assessment of the implementations is carried out in the finite element formulation of the problem. This paper compares the numerical approximations to the semi-analytical solutions and analyzes the influence of discretization parameters, as well as their interdependence. This study also compares accuracy of these methods with other traditional approach based on time-explicit treatment of the effective heat capacity with and without iterative correction.

Findings

This study shows that the quantitative comparison between the semi-analytical and numerical solutions of the symmetric Stefan problems can serve as a robust tool for identifying the optimal values of discretization parameters, both in terms of accuracy and stability. Moreover, this study concludes that, from the performance point of view, both of the semi-implicit implementations studied are equivalent, for optimal choice of discretization parameters, they outperform the effective heat capacity method with iterative correction in terms of accuracy, but, by contrast, they lose stability for subcritical thickness of the mushy region.

Practical implications

The proposed benchmark provides a versatile, accessible test bed for computational methods approximating multidimensional phase change problems. The supplemented numerical code can be directly used to test any method of choice against the semi-analytical solutions.

Originality/value

While the solutions of the symmetric Stefan problems for individual spatial dimensions can be found scattered across the literature, the unifying perspective on their derivation presented here has, to the best of the authors’ knowledge, been missing. The unified formulation in a general dimension can be used for the systematic construction of well-posed, reliable and genuinely multidimensional benchmark experiments.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 September 2007

Wenjun Liu and Bozhi Yang

The goal of this review paper is to provide information on several commonly used thermography techniques in semiconductor and micro‐device industry and research today.

1710

Abstract

Purpose

The goal of this review paper is to provide information on several commonly used thermography techniques in semiconductor and micro‐device industry and research today.

Design/methodology/approach

The temperature imaging or mapping techniques include thin coating methods such as liquid crystal thermography and fluorescence microthermography, contact mechanical methods such as scanning thermal microscopy, and optical techniques such as infrared microscopy and thermoreflectance. Their principles, characteristics and applications are discussed.

Findings

Thermal issues play an important part in optimizing the performance and reliability of high‐frequency and high‐packing density electronic circuits. To improve the performance and reliability of microelectronic devices and also to validate thermal models, accurate knowledge of local temperatures and thermal properties is required.

Originality/value

The paper provides readers, especially technical engineers in industry, a general knowledge of several commonly used thermography techniques in the semiconductor and micro‐device industries.

Details

Sensor Review, vol. 27 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 September 2005

Nawaf H. Saeid and A.A. Mohamad

To study the natural convention in a square porous cavity induced by heating one of the sidewalls and the other sidewall is cooled, while the horizontal walls are adiabatic. The…

Abstract

Purpose

To study the natural convention in a square porous cavity induced by heating one of the sidewalls and the other sidewall is cooled, while the horizontal walls are adiabatic. The heated wall is assumed to have spatial sinusoidal temperature variations about a constant mean value.

Design/methodology/approach

The Darcy model is used in the mathematical modeling of the natural convection in porous cavity. A finite volume method based on QUICK scheme is used to solve numerically the non‐dimensional governing equations.

Findings

It is found that the average Nusselt number varies based on the hot wall temperature. It increases with an increase in the amplitude, while the maximum average Nusselt number occurs at the wave number of k=0.75 for Rayleigh number based on the permeability of the medium of 500 and 1000 and at k=0.70 for a Rayleigh number of 10‐200.

Research limitations/implications

The effects of the amplitude (0‐1.0) and the wave number (0‐5) of the heated sidewall temperature variation on the natural convection in the cavity are investigated for Raleigh number 10‐1000.

Practical implications

The spatial sinusoidal temperature variation occurs in the applications when a cylindrical heater or a periodic array of heaters placed on a flat wall.

Originality/value

This paper is providing the details of the heat transfer inside the cavity which can be used in thermal design.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 15 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 August 2014

Beata Barteczka, Piotr Slobodzian, Arkadiusz Dabrowski and Leszek Golonka

The purpose of this paper was to investigate the influence of non-uniform temperature distribution inside a box furnace during the firing process on electrical properties of the…

Abstract

Purpose

The purpose of this paper was to investigate the influence of non-uniform temperature distribution inside a box furnace during the firing process on electrical properties of the low-temperature co-fired ceramic (LTCC) materials used in radio frequency (RF)/microwave applications.

Design/methodology/approach

The authors studied the change in dielectric constant of two popular LTCC materials (DP 951 and DP 9K7) depending on the position of their samples inside the box furnace. Before firing of the samples, temperature distribution inside the box furnace was determined. The dielectric constant was measured using the method of two microstrip lines.

Findings

The findings showed that non-uniform temperature distribution with spatial difference of 6°C can result in 3-4 per cent change of the dielectric constant. It was also found that dielectric constant of the two tested materials shows disparate behavior under the same temperature distribution inside the box furnace.

Practical implications

The dielectric constant of the substrate materials is crucial for RF/microwave applications. Therefore, it was shown that 3-4 per cent deviation in dielectric constant can result in considerable detuning of microwave circuits and antennas.

Originality/value

To the best of the authors’ knowledge, the quantitative description of the impact of temperature distribution inside a box furnace on electrical properties of the LTCC materials has never been published in the open literature. The findings should be helpful when optimizing production process for high yield of reliable LTCC components like filters, baluns and chip antennas.

Details

Microelectronics International, vol. 31 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 14 November 2019

Leo Lukose and Tanmay Basak

The purpose of this paper is to study thermal (natural) convection in nine different containers involving the same area (area= 1 sq. unit) and identical heat input at the bottom…

Abstract

Purpose

The purpose of this paper is to study thermal (natural) convection in nine different containers involving the same area (area= 1 sq. unit) and identical heat input at the bottom wall (isothermal/sinusoidal heating). Containers are categorized into three classes based on geometric configurations [Class 1 (square, tilted square and parallelogram), Class 2 (trapezoidal type 1, trapezoidal type 2 and triangle) and Class 3 (convex, concave and triangle with curved hypotenuse)].

Design/methodology/approach

The governing equations are solved by using the Galerkin finite element method for various processing fluids (Pr = 0.025 and 155) and Rayleigh numbers (103 ≤ Ra ≤ 105) involving nine different containers. Finite element-based heat flow visualization via heatlines has been adopted to study heat distribution at various sections. Average Nusselt number at the bottom wall ( Nub¯) and spatially average temperature (θ^) have also been calculated based on finite element basis functions.

Findings

Based on enhanced heating criteria (higher Nub¯ and higher θ^), the containers are preferred as follows, Class 1: square and parallelogram, Class 2: trapezoidal type 1 and trapezoidal type 2 and Class 3: convex (higher θ^) and concave (higher Nub¯).

Practical implications

The comparison of heat flow distributions and isotherms in nine containers gives a clear perspective for choosing appropriate containers at various process parameters (Pr and Ra). The results for current work may be useful to obtain enhancement of the thermal processing rate in various process industries.

Originality/value

Heatlines provide a complete understanding of heat flow path and heat distribution within nine containers. Various cold zones and thermal mixing zones have been highlighted and these zones are found to be altered with various shapes of containers. The importance of containers with curved walls for enhanced thermal processing rate is clearly established.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 March 2017

Anne-Charlotte Goupil, Jean-Charles Craveur, Benjamin Mercier and Philippe Barabinot

This paper aims to deal with numerical modelling of composite panels of naval industry exposed to fire. Finite element (FE) analyses have been used to study the thermomechanical…

Abstract

Purpose

This paper aims to deal with numerical modelling of composite panels of naval industry exposed to fire. Finite element (FE) analyses have been used to study the thermomechanical behaviour of structures. This paper focuses more particularly on assumptions used to model and evaluate design performance of sandwich panels made of E-Glass vinyl ester and balsawood cored submitted to a certification fire test.

Design/methodology/approach

The methodology consisted of having an advanced understanding of phenomena occurring in both thermal and mechanical behaviours when large structures are degraded under thermal solicitation. Then, properties measuring methods were explored and studied in relation with the size of the structure they are used to describe. Finally, several modelling strategies were compared and applied to large-size panels under ISO 834 fire conditions.

Findings

Research studies and comparisons showed that for these types of material and these types of structure, non-linear thermomechanical behaviour can be performed with a so-called “reduced” thermal model, provided that properties are measured in an appropriate way. “Reduced” model was compared with “full” model, and results were close to experimental measures. A mechanical properties’ review allowed selecting only necessary material FE analysis of large panels under ISO 834 fire.

Originality/value

The research was conducted on real-size structures taking into account the real conditions in which structures are tested when passing certification. Work was carried out on reducing numerical model size without neglecting phenomenon or losing accuracy.

Details

Journal of Structural Fire Engineering, vol. 8 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 1 January 1987

A. Al‐OMAR and J.P. KRUSIUS

Boundary limited transport in small compound semiconductor devices is studied within the self‐consistent Monte Carlo method. New stable microscopic models fully accounting for…

Abstract

Boundary limited transport in small compound semiconductor devices is studied within the self‐consistent Monte Carlo method. New stable microscopic models fully accounting for stochastic carrier exchange at boundaries have been developed for ohmic, tunneling, and Schottky barrier boundaries. These new models are demonstrated with applications to the one‐dimensional GaAs resistor, N+‐N‐N+ diode and the N+‐N Schottky diode.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 6 no. 1
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 5 August 2014

M. Grujicic, J.S. Snipes, R. Galgalikar, S. Ramaswami, R. Yavari, C.-F. Yen, B.A. Cheeseman and J.S. Montgomery

The purpose of this paper is to develop multi-physics computational model for the conventional gas metal arc welding (GMAW) joining process has been improved with respect to its…

Abstract

Purpose

The purpose of this paper is to develop multi-physics computational model for the conventional gas metal arc welding (GMAW) joining process has been improved with respect to its predictive capabilities regarding the spatial distribution of the mechanical properties (strength, in particular) within the weld.

Design/methodology/approach

The improved GMAW process model is next applied to the case of butt-welding of MIL A46100 (a prototypical high-hardness armor-grade martensitic steel) workpieces using filler-metal electrodes made of the same material. A critical assessment is conducted of the basic foundation of the model, including its five modules, each dedicated to handling a specific aspect of the GMAW process, i.e.: first, electro-dynamics of the welding-gun; second, radiation/convection controlled heat transfer from the electric arc to the workpiece and mass transfer from the filler-metal consumable electrode to the weld; third, prediction of the temporal evolution and the spatial distribution of thermal and mechanical fields within the weld region during the GMAW joining process; fourth, the resulting temporal evolution and spatial distribution of the material microstructure throughout the weld region; and fifth, spatial distribution of the as-welded material mechanical properties.

Findings

The predictions of the improved GMAW process model pertaining to the spatial distribution of the material microstructure and properties within the MIL A46100 butt-weld are found to be consistent with general expectations and prior observations.

Originality/value

To explain microstructure/property relationships within different portions of the weld, advanced physical-metallurgy concepts and principles are identified, and their governing equations parameterized and applied within a post-processing data-reduction procedure.

Details

Multidiscipline Modeling in Materials and Structures, vol. 10 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 21 February 2020

Tanmay Basak

This paper aims to investigate the thermal performance involving larger heating rate, targeted heating, heating with least non-uniformity of the spatial distribution of temperature

179

Abstract

Purpose

This paper aims to investigate the thermal performance involving larger heating rate, targeted heating, heating with least non-uniformity of the spatial distribution of temperature and larger penetration of heating within samples vs shapes of samples (circle, square and triangular).

Design/methodology/approach

Galerkin finite element method (GFEM) with adaptive meshing in a composite domain (free space and sample) is used in an in-house computer code. The finite element meshing is done in a composite domain involving triangle embedded within a semicircular hypothetical domain. The comparison of heating pattern is done for various shapes of samples involving identical cross-sectional area. Test cases reveal that triangular samples can induce larger penetration of heat and multiple heating fronts. A representative material (beef) with high dielectric loss corresponding to larger microwave power or heat absorption in contrast to low lossy samples is considered for the current study. The average power absorption within lossy samples has been computed using the spatial distribution and finite element basis sets. Four regimes have been selected based on various local maxima of the average power for detailed investigation. These regimes are selected based on thin, thick and intermediate limits of the sample size corresponding to the constant area of cross section, Ac involving circle or square or triangle.

Findings

The thin sample limit (Regime 1) corresponds to samples with spatially invariant power absorption, whereas power absorption attenuates from exposed to unexposed faces for thick samples (Regime 4). In Regimes 2 and 3, the average power absorption non-monotonically varies with sample size or area of cross section (Ac) and a few maxima of average power occur for fixed values of Ac involving various shapes. The spatial characteristics of power and temperature have been critically analyzed for all cross sections at each regime for lossy samples. Triangular samples are found to exhibit occurrence of multiple heating fronts for large samples (Regimes 3 and 4).

Practical implications

Length scales of samples of various shapes (circle, square and triangle) can be represented via Regimes 1-4. Regime 1 exhibits the identical heating rate for lateral and radial irradiations for any shapes of lossy samples. Regime 2 depicts that a larger heating rate with larger temperature non-uniformity can occur for square and triangular-Type 1 lossy sample during lateral irradiation. Regime 3 depicts that the penetration of heat at the core is larger for triangular samples compared to circle or square samples for lateral or radial irradiation. Regime 4 depicts that the penetration of heat is still larger for triangular samples compared to circular or square samples. Regimes 3 and 4 depict the occurrence of multiple heating fronts in triangular samples. In general, current analysis recommends the triangular samples which is also associated with larger values of temperature variation within samples.

Originality/value

GFEM with generalized mesh generation for all geometries has been implemented. The dielectric samples of any shape are surrounded by the circular shaped air medium. The unified mesh generation within the sample connected with circular air medium has been demonstrated. The algorithm also demonstrates the implementation of various complex boundary conditions in residuals. The numerical results compare the heating patterns for all geometries involving identical areas. The thermal characteristics are shown with a few generalized trends on enhanced heating or targeted heating. The circle or square or triangle (Type 1 or Type 2) can be selected based on specific heating objectives for length scales within various regimes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 5000