Search results

1 – 10 of 32
Article
Publication date: 15 March 2024

Obed Ofori Yemoh, Richard Opoku, Gabriel Takyi, Ernest Kwadwo Adomako, Felix Uba and George Obeng

This study has assessed the thermal performance of locally fabricated bio-based building envelopes made of coconut and corn husk composite bricks to reduce building wall heat…

Abstract

Purpose

This study has assessed the thermal performance of locally fabricated bio-based building envelopes made of coconut and corn husk composite bricks to reduce building wall heat transmission load and energy consumption towards green building adaptation.

Design/methodology/approach

Samples of coconut fiber (coir) and corn husk fiber bricks were fabricated and tested for their thermophysical properties using the Transient Plane Source (TPS) 2500s instrument. A simulation was conducted using Dynamic Energy Response of Building - Lunds Tekniska Hogskola (DEROB-LTH) to determine indoor temperature variation over 24 h. The time lag and decrement factor, two important parameters in evaluating building envelopes, were also determined.

Findings

The time lag of the bio-based composite building envelope was found to be in the range of 4.2–4.6 h for 100 mm thickness block and 10.64–11.5 h for 200 mm thickness block. The decrement factor was also determined to be in the range of 0.87–0.88. The bio-based composite building envelopes were able to maintain the indoor temperature of the model from 25.4 to 27.4 °C, providing a closely stable indoor thermal comfort despite varying outdoor temperatures. The temperature variation in 24 h, was very stable for about 8 h before a degree increment, providing a comfortable indoor temperature for occupants and the need not to rely on air conditions and other mechanical forms of cooling. Potential energy savings also peaked at 529.14 kWh per year.

Practical implications

The findings of this study present opportunities to building developers and engineers in terms of selecting vernacular materials for building envelopes towards green building adaptation, energy savings, reduced construction costs and job creation.

Originality/value

This study presents for the first time, time lag and decrement factor for bio-based composite building envelopes for green building adaptation in hot climates, as found in Ghana.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Book part
Publication date: 18 January 2024

Bhimsen Rajkumarsingh, Robert T. F. Ah King and Khalid Adam Joomun

The performance of thermal comfort utilising machine learning and its acceptability by students and other users at the Professor Sir Edouard Lim Fat Engineering Tower at the…

Abstract

The performance of thermal comfort utilising machine learning and its acceptability by students and other users at the Professor Sir Edouard Lim Fat Engineering Tower at the University of Mauritius are evaluated in this study. Students and building occupants were asked to fill out surveys on-site as data was gathered from sensors throughout the structure. The Thermal Sensation Vote (TSV) and other important data were collected through the surveys, including the effect of wind on thermal comfort. An adaptive model incorporating solar and wind effects was evaluated using multiple linear regression techniques and RStudio. Three models were used to evaluate thermal comfort, including the adaptive one. Numerous models were compared and evaluated in order to select the best one. It was found that the adaptive model (Model 1) was deemed to be the best model for its application. It was also found that Fanger's PMV/PPD (Model 2) was a very good approach to determining thermal comfort. Through thorough analysis, it was concluded that the range of air temperature and wind speed for thermal comfort was 25.830°C–28.0°C and 0.26 m/s to 0.42 m/s, respectively. In order for cities to remain secure, resilient and sustainable, it will be important to manage thermal comfort and reduce populations' exposure to heat stress (SDG 11). The achievement of income and productivity goals will be hampered if measures to protect populations from heat stress are not taken (SDG 8). Thermal regulation is also necessary for the provision of numerous health services (SDG 3).

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

Keywords

Article
Publication date: 17 October 2023

Samridhi Garg, Vinay Kumar Midha and Monica Sikka

In experiments utilising sweat solution and distilled water, seamed ensembles performed less thermally efficiently than unseamed fabrics.

Abstract

Purpose

In experiments utilising sweat solution and distilled water, seamed ensembles performed less thermally efficiently than unseamed fabrics.

Design/methodology/approach

Water may not accurately reflect perspiration when testing multi-layered clothes for thermal comfort in wet state. Most researchers used water or sodium chloride (NaCl) to measure wet state thermal comfort. However, human perspiration is an extremely complex mixture of aqueous chemicals, including minerals, salts, lipids, urea and lactic acid. This study compares the effects of simulated sweat solution to distilled water on the thermal behaviour of a multi-layered fabric assembly with different seam patterns.

Findings

Experiment results show that stitching decreases thermal resistance and thermal conductivity. Seam pattern of 10 cm diagonal spacing is more thermally resistant than 2.5 cm diagonal spacing. In comparison to that of simulated sweat, fabric that has been moistened with distilled water exhibits increased thermal conductivity. Hollow polyester wadding or micro polyester wadding as the intermediate layer exhibits greater thermal resistance than multi-layered construction with spacer fabric as middle layer.

Originality/value

This study considers human perspiration while designing protective clothing for wet thermal comfort.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 4 June 2024

Yun Su, Hui Wang, Guangju Liu, Yunyi Wang, Jianlin Liu and Miao Tian

The paper aims to reveal the relationship among energy efficiency, thermal comfort and thermal regulation of electrically heated footwear and to investigate influencing factors on…

Abstract

Purpose

The paper aims to reveal the relationship among energy efficiency, thermal comfort and thermal regulation of electrically heated footwear and to investigate influencing factors on the energy efficiency and thermal comfort.

Design/methodology/approach

A finite volume model was proposed to simulate the two-dimensional heat transfer in electrically heated footwear (EHF) under an extremely cold condition. The model domain consists of three-layer footwear materials, a heating pad, a sock material, an air gap and skin tissues. Model predictions were verified by experimental data from cold-contact exposure. Then the influencing factors on the energy efficiency and thermal comfort were investigated through parametric analysis.

Findings

The paper demonstrated that the skin temperature control (STC) mode provided superior thermal comfort compared to the heating pad temperature control (HPTC) mode. However, the energy efficiency for the HPTC mode with a heating temperature of 38 °C was 18% higher than the STC mode. The energy efficiency of EHF while reaching the state of thermal comfort was strongly determined by the arrangement and connection of heating elements, heating temperature, thickness and thermal conductivity of footwear materials.

Originality/value

The findings obtained in this paper can be used to engineer the EHF that provides optimal thermal comfort and energy efficiency in cold environments.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 14 May 2024

Gizem Karakan Günaydın, Erhan Kenan Çeven and Nejla Çeven

The paper aims to provide an investigation about the effect of weft yarn type on thermal comfort and air permeability properties of Lyocell blended drapery fabrics.

Abstract

Purpose

The paper aims to provide an investigation about the effect of weft yarn type on thermal comfort and air permeability properties of Lyocell blended drapery fabrics.

Design/methodology/approach

The paper evaluates the effect of weft yarn type on thermal comfort and air permeability properties of Lyocell blended drapery fabrics. Twill drapery fabrics with 18 Tex linen warp yarn where two types of weft yarns were utilized respectively with the order of “A” yarn and “B” yarn. 58 Tex Lyocell Linen blended first weft yarn (A yarn) was kept constant and the second weft yarn (B yarn) varied in different yarn structures and yarn count. Thermal comfort properties such as thermal conductivity, thermal resistivity, thermal absorptivity, fabric thickness were measured by means of Alambeta device. Correlation matrix between the thermal properties was also displayed. Air permeability results were obtained by using SDL Atlas Digital Air Permeability Tester Model M 021 A. One way analysis of variance (ANOVA) test was performed in order to investigate the effect of weft yarn type on thermal comfort and air permeability properties of Lyocell blended drapery fabrics.

Findings

In this paper, weft yarn type was found as a significant factor on some of the thermal comfort properties such as thermal conductivity, thermal resistivity, thermal absorptivity, fabric thickness and on the air permeability properties.

Originality/value

There are limited works related to evaluation of some thermal comfort and air permeability properties of Lyocell blended drapery fabrics.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 31 May 2022

Samridhi Garg, Monica Puri Sikka and Vinay Kumar Midha

Perspiration and heat are produced by the body and must be eliminated to maintain a stable body temperature. Sweat, heat and air must pass through the fabric to be comfortable…

Abstract

Purpose

Perspiration and heat are produced by the body and must be eliminated to maintain a stable body temperature. Sweat, heat and air must pass through the fabric to be comfortable. The cloth absorbs sweat and then releases it, allowing the body to chill down. By capillary action, moisture is driven away from fabric pores or sucked out of yarns. Convectional air movement improves sweat drainage, which may aid in body temperature reduction. Clothing reduces the skin's ability to transport heat and moisture to the outside. Excessive moisture makes clothing stick to the skin, whereas excessive heat induces heat stress, making the user uncomfortable. Wet heat loss is significantly more difficult to understand than dry heat loss. The purpose of this study is to provided a good compilation of complete information on wet thermal comfort of textile and technological elements to be consider while constructing protective apparel.

Design/methodology/approach

This paper aims to critically review studies on the thermal comfort of textiles in wet conditions and assess the results to guide future research.

Findings

Several recent studies focused on wet textiles' impact on comfort. Moisture reduces the fabric's thermal insulation value while also altering its moisture characteristics. Moisture and heat conductivity were linked. Sweat and other factors impact fabric comfort. So, while evaluating a fabric's comfort, consider both external and inside moisture.

Originality/value

The systematic literature review in this research focuses on wet thermal comfort and technological elements to consider while constructing protective apparel.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 28 June 2024

Meghana Kammeta and N.K. Palaniswamy

In everyday life, people generally wear two layers of clothes (a knitted vest and a knitted t-shirt) during the summer. It is essential to understand which types of innerwear and…

Abstract

Purpose

In everyday life, people generally wear two layers of clothes (a knitted vest and a knitted t-shirt) during the summer. It is essential to understand which types of innerwear and outerwear maximize comfort. The primary objective of this research is to investigate the influence of layering outerwear on innerwear, as well as the air gap between two layers, on thermal comfort properties.

Design/methodology/approach

In this study, a total of 12 combinations were created from four vest fabrics and three T-shirt fabrics. The thermal properties (thermal conductivity, thermal resistance, thermal absorptivity, thermal diffusion and peak heat flow) were evaluated for the individual inner and outer layers. Each inner layer was layered with an outer layer to observe the effect of layering on the thermal properties. An air gap of 2 mm was introduced between the inner and outer layers to study the effect of air gap on thermal properties.

Findings

Tencel fibre exhibits higher thermal conductivity and absorptivity than cotton and polyester. Upon layering an outer layer on an inner layer, the thermal conductivity and thermal absorptivity increase to a slight extent, thermal resistance and diffusion increase drastically and the peak heat flow reduces. With an air gap between the two layers, the thermal conductivity did not improve, the difference in thermal resistance among all the combinations reduced, the thermal absorptivity of the combination textiles was lower than that of the innerwear alone, the thermal diffusion increased and the peak heat flow diminished for all the combinations.

Practical implications

In practice, this comprehensive thermal comfort analysis provides specific combinations of inner and outer articles of clothing that are most appropriate for enhancing comfort during the summer season.

Originality/value

Though there are many studies on the effect of multilayer fabrics on thermal properties, no extensive research analyses the influence of innerwear and outerwear combinations on thermal comfort properties.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 16 May 2024

Erfan Anjomshoa

Nowadays, thermal comfort plays a prominent role in contemporary construction practices. Appropriate thermal insulation not only offers energy efficiency benefits in buildings but…

23

Abstract

Purpose

Nowadays, thermal comfort plays a prominent role in contemporary construction practices. Appropriate thermal insulation not only offers energy efficiency benefits in buildings but also enhances occupant well-being, comfort, and productivity. Therefore, a comprehensive understanding of the thermal properties of building materials is essential. This research aims to prepare and investigate a lightweight gypsum-based composite incorporating nano montmorillonite with advanced thermal insulation properties, considering both quality and cost-effectiveness while ensuring environmental compatibility.

Design/methodology/approach

This study adopts a laboratory experimental approach. A gypsum sample (without additives) and seven samples of gypsum combined with varying percentages of sodium and calcium montmorillonite nanoclays undergo extensive testing and analysis. Subsequently, the properties of these samples are compared.

Findings

The results indicate that adding montmorillonite nanoclays to gypsum composites reduces the density of the tested samples and increases their porosity. Moreover, the thermal conductivity coefficient decreases in these samples, significantly improving the thermal insulation properties of the lightweight gypsum plaster. This improvement is more pronounced in samples containing sodium montmorillonite nanoclay compared to calcium-based samples. Additionally, the investigations reveal that compressive strength decreases with the addition of montmorillonite to the samples.

Originality/value

In this research, laboratory experiments were conducted to investigate the physical and mechanical properties of gypsum plaster with varying percentages of sodium and calcium montmorillonite nanoclays. The studied properties include density, porosity, thermal conductivity coefficient, and compressive strength. Additionally, stress-strain diagrams, elastic modulus, and initial and secondary critical stresses were analyzed for each specimen.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 5 October 2022

Parvathidevi A. and Naga Satish Kumar Ch

This study aims to assess the efficacy of thermal analysis of concrete slabs by including different insulation materials using ANSYS. Regression equations were proposed to predict…

Abstract

Purpose

This study aims to assess the efficacy of thermal analysis of concrete slabs by including different insulation materials using ANSYS. Regression equations were proposed to predict the thermal conductivity using concrete density. As these simulation and regression analyses are essential tools in designing the thermal insulation concretes with various densities, they sequentially reduce the associated time, effort and cost.

Design/methodology/approach

Two grades of concretes were taken for thermal analysis. They were designed by replacing the natural fine aggregates with thermal insulation aggregates: expanded polystyrene, exfoliated vermiculite and light expanded clay. Density, temperature difference, specific heat capacity, thermal conductivity and time were measured by conducting experiments. This data was used to simulate concrete slabs in ANSYS. Regression analysis was performed to obtain the relation between density and thermal conductivity. Finally, the quality of the predicted regression equations was assessed using root mean square error (RMSE), mean absolute error (MAE), integral absolute error (IAE) and normal efficiency (NE).

Findings

ANSYS analysis on concrete slabs accurately estimates the thermal behavior of concrete, with lesser error value ranges between 0.19 and 7.92%. Further, the developed regression equations proved accurate with lower values of RMSE (0.013 to 0.089), MAE (0.009 to 0.088); IAE (0.216 to 5.828%) and higher values of NE (94.16 to 99.97%).

Originality/value

The thermal analysis accurately simulates the experimental transfer of heat across the concrete slab. Obtained regression equations proved helpful while designing the thermal insulation concrete.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 27 December 2021

Elahe Mirabi and Fatemeh Akrami Abarghuie

The earth-sheltered building is an adaptive strategy reducing energy consumption as well as increasing thermal comfort of the residents. Although this idea historically…

Abstract

Purpose

The earth-sheltered building is an adaptive strategy reducing energy consumption as well as increasing thermal comfort of the residents. Although this idea historically implemented in the city of Yazd, Iran, its effects on thermal comfort have not been studied thoroughly. This paper aims to discuss and analyze energy performance, in terms of parameters such as orientation, underground depth, nocturnal ventilation and its subsequent effects on thermal comfort in earth-sheltered buildings in Yazd.

Design/methodology/approach

Using EnergyPlus software, the obtained numeric data are precisely modeled, simulated and analyzed.

Findings

Results show that there is a direct relationship between depth of construction and energy consumption savings. The more construction depth of earth-sheltered buildings, the more percentage of energy consumption savings, that is of a higher rate in comparison to the aboveground ones. However, in south orientation, energy saving significantly reduces from depth of 2 m downwards and the annual indoor temperature fluctuation decreases by 50%. This subsequently yields to experiencing indoor thermal comfort for a significant number of days throughout the year. Considering the effects of orientation factor, the south orientation regardless of the depth provides the most desired outcome regarding energy savings.

Originality/value

Simulating the model generalized to the sunken courtyard can approve that the results of this research can be applied to the other models.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 5
Type: Research Article
ISSN: 2398-4708

Keywords

1 – 10 of 32