Search results

1 – 10 of 260
Article
Publication date: 1 June 1994

T.S. Lee

Mixed recirculatory flow in the annuli of stationary and rotatinghorizontal cylinders were studied numerically. A set of distorted‘false transient’ parameters were introduced to…

Abstract

Mixed recirculatory flow in the annuli of stationary and rotating horizontal cylinders were studied numerically. A set of distorted ‘false transient’ parameters were introduced to speed up the steady state solution of the unsteady vorticity, energy and stream function—vorticity equations. The inner cylinder of the annuli is assumed heated and rotating at Reynolds numbers that exclude the effects of centrifugal acceleration and three‐dimensional Taylor vortices. The Prandtl number considered is in the range of 0.01 to 1.0 and Rayleigh number in the range of 102 to 106. Radius ratios of the cylinders considered are 1.25, 2.5 and 5.0. For a radius ratio of 2.5, inner cylinder rotation in the Reynolds number range of 0 to 1120 was considered. Vertical eccentricities in the range of ±2/3 were studied for cases of the rotating inner cylinder. Numerical experiments show that the mean Nusselt number increases with Rayleigh number for both cases of concentric and eccentric stationary inner cylinder. At a Prandtl number of order 1.0 with a fixed Rayleigh number, when the inner cylinder is made to rotate, the mean Nusselt number decreases throughout the flow. At lower Prandtl number of the order 0.1 to 0.01, the mean Nusselt number remained fairly constant with respect to the rotational Reynolds number.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 4 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 November 2018

Amin Shahsavar, Pouyan Talebizadeh Sardari and D. Toghraie

This paper aims to numerically investigate the heat transfer and entropy generation characteristics of water-based hybrid nanofluid in natural convection flow inside a concentric

Abstract

Purpose

This paper aims to numerically investigate the heat transfer and entropy generation characteristics of water-based hybrid nanofluid in natural convection flow inside a concentric horizontal annulus.

Design/methodology/approach

The hybrid nanofluid is prepared by suspending tetramethylammonium hydroxide-coated Fe3O4 (magnetite) nanoparticles and gum arabic (GA)-coated carbon nanotubes (CNTs) in water. The effects of nanoparticle volume concentration and Rayleigh number on the streamlines, isotherms, average Nusselt number and the thermal, frictional and total entropy generation rates are investigated comprehensively.

Findings

Results show the advantageous effect of hybrid nanofluid on the average Nusselt number. Furthermore, the study of entropy generation shows the increment of both frictional and thermal entropy generation rates by increasing Fe3O4 and CNT concentrations at various Rayleigh numbers. Increasing Rayleigh number from 103 to 105, at Fe3O4 concentration of 0.9 per cent and CNT concentration of 1.35 per cent, increases the average Nusselt number, thermal entropy generation rate and frictional entropy generation rate by 224.95, 224.65 and 155.25 per cent, respectively. Moreover, increasing the Fe3O4 concentration from 0.5 to 0.9 per cent, at Rayleigh number of 105 and CNT concentration of 1.35 per cent, intensifies the average Nusselt number, thermal entropy generation rate and frictional entropy generation rate by 18.36, 22.78 and 72.7 per cent, respectively.

Originality/value

To the best knowledge of the authors, there are not any archival publications considering the detailed behaviour of the natural convective heat transfer and entropy generation of hybrid nanofluid in a concentric annulus.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 10 December 2018

Ahad Abedini, Saeed Emadoddin and Taher Armaghani

This study aims to investigate the numerical analysis of mixed convection within the horizontal annulus in the presence of water-based fluid with nanoparticles of aluminum oxide…

Abstract

Purpose

This study aims to investigate the numerical analysis of mixed convection within the horizontal annulus in the presence of water-based fluid with nanoparticles of aluminum oxide, copper, silver and titanium oxide. Numerical solution is performed using a finite-volume method based on the SIMPLE algorithm, and the discretization of the equations is generally of the second order. Inner and outer cylinders have a constant temperature, and the inner cylinder temperature is higher than the outer one. The two cylinders can be rotated in both directions at a constant angular velocity. The effect of parameters such as Rayleigh, Richardson, Reynolds and the volume fraction of nanoparticles on heat transfer and flow pattern are investigated. The results show that the heat transfer rate increases with the increase of the Rayleigh number, as well as by increasing the volume fraction of the nanoparticles, the heat transfer rate increases, and this increase is about 8.25 per cent for 5 per cent volumetric fraction. Rotation of the cylinders reduces the overall heat transfer. Different directions of rotation have a great influence on the flow pattern and isotherms, and ultimately on heat transfer. The addition of nanoparticles does not have much effect on the flow pattern and isotherms, but it is quantitatively effective. The extracted results are in good agreement with previous works.

Design/methodology/approach

Studying mixed convection heat transfer in the horizontal annulus in the presence of a water-based fluid with aluminum oxide, copper, silver and titanium oxide nanoparticles is carried out quantitatively using a finite-volume method based on the SIMPLE algorithm.

Findings

Increasing the Rayleigh number increases the Nusselt number. Increasing the Richardson number increases heat transfer. Adding nanoparticles does not have much effect on the flow pattern but is effective quantitatively on heat transfer parameters. The addition of nanoparticles sometimes increases the heat transfer rate by about 8.25 per cent. In constant Rayleigh numbers, increasing the Reynolds number reduces heat transfer. The Rayleigh and Reynolds numbers greatly affect the isotherms and streamlines. In addition to the thermal conductivity of nanoparticles, the thermo-physical properties of nanoparticles has great effect in the formation of isotherms and streamlines and ultimately heat transfer.

Originality/value

Studying the effect of different direction of rotation on the isotherms and streamlines, as well as the comparison of different nanoparticles on mixed convection heat transfer in annulus.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 January 1995

J.P. Barbosa Mota and E. Saatdjian

Natural convection in a porous layer between two horizontal, concentriccylinders is investigated numerically by solving the 2‐DDarcy‐Boussinesq equations on a very fine grid…

Abstract

Natural convection in a porous layer between two horizontal, concentric cylinders is investigated numerically by solving the 2‐D Darcy‐Boussinesq equations on a very fine grid. The parabolic‐elliptic system was solved by a second order finite difference scheme based on the implicit alternating direction method coupled with successive under relaxation. The calculations show that for radius ratios above 1.7, the functional relationship between the mean Nusselt number and the Rayleigh number exhibits a closed hysteresis loop associated with the transition from a two to a four cell flow pattern. For very small radius ratios, steady state regimes containing 2, 4, 6, and 8 cells are progressively obtained as the Rayleigh number is increased, but no hysteresis behaviour is observed. For a radius ratio of 2, the numerical results are in good agreement with the experimental data. Multi‐cellular regimes and hysteresis loops have also been reported in the literature for fluid annuli but some differences between the two cases exist and are fully explained below.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 5 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 June 2016

Chahinez Ghernoug, Mahfoud Djezzar, Hassane Naji and Abdelkarim Bouras

The purpose of this paper is to numerically study the double-diffusive natural convection within an eccentric horizontal cylindrical annulus filled with a Newtonian fluid. The…

220

Abstract

Purpose

The purpose of this paper is to numerically study the double-diffusive natural convection within an eccentric horizontal cylindrical annulus filled with a Newtonian fluid. The annulus walls are maintained at uniform temperatures and concentrations so as to induce aiding thermal and mass buoyancy forces within the fluid. For that, this simulation span a moderate range of thermal Rayleigh number (100RaT100,000), Lewis (0.1Le10), buoyancy ratio (0N5) and Prandtl number (Pr=0.71) to examine their effects on flow motion and heat and mass transfers.

Design/methodology/approach

A finite volume method in conjunction with the successive under-relaxation algorithm has been developed to solve the bipolar equations. These are written in dimensionless form in terms of vorticity, stream function, temperature and concentration. Beforehand, the implemented computer code has been validated through already published findings in the literature. The isotherms, streamlines and iso-concentrations are exhibited for various values of Rayleigh and Lewis numbers, and buoyancy ratio. In addition, heat and mass transfer rates in the annulus are translated in terms of Nusslet and Sherwood numbers along the enclosure’s sides.

Findings

It is observed that, for the range of parameters considered here, the results show that the average Sherwood number increases with, while the average Nusselt number slightly dips as the Lewis number increases. It is also found that, under the convective mode, the local Nusselt number (or Sherwood) increases with the buoyancy ratio. Likewise, according to Lewis number’s value, the flow pattern is either symmetric and stable or asymmetric and random. Besides that, the heat transfer is transiting from a conductive mode to a convective mode with increasing the thermal Rayleigh number, and the flow structure and the rates of heat and mass transfer are significantly influenced by this parameter.

Research limitations/implications

The range of the Rayleigh number considered here covers only the laminar case, with some constant parameters, namely the Prandtl number (Pr = 0.71), and the tilt angle (α=90°). The analysis here is only valid for steady, two-dimensional, laminar and aiding flow within an eccentric horizontal cylindrical annulus. This motivates further investigations involving other relevant parameters as N (opposite flows), Ra, Pr, Le, the eccentricity, the tilt angle, etc.

Practical implications

An original framework for handling the double-diffusive natural convection within annuli is available, based on the bipolar equations. In addition, the achievement of this work could help researchers design thermal systems supported by annulus passages. Applications of the results can be of value in various arrangements such as storage of liquefied gases, electronic cable cooling systems, nuclear reactors, underground disposal of nuclear wastes, manifolds of solar energy collectors, etc.

Originality/value

Given the geometry concerned, the bipolar coordinates have been used to set the inner and outer walls boundary conditions properly without interpolation. In addition, since studies on double-diffusive natural convection in annuli are lacking, the obtained results may be of interest to handle other configurations (e.g., elliptical-shaped speakers) with other boundary conditions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 June 2007

Maged A.I. El‐Shaarawi, Esmail M.A. Mokheimer and Ahmad Jamal

To explore the effect of the annulus geometrical parameters on the induced flow rate and the heat transfer under the conjugate (combined conduction and free convection) thermal…

Abstract

Purpose

To explore the effect of the annulus geometrical parameters on the induced flow rate and the heat transfer under the conjugate (combined conduction and free convection) thermal boundary conditions with one cylinder heated isothermally while the other cylinder is kept at the inlet fluid temperature.

Design/methodology/approach

A finite‐difference algorithm has been developed to solve the bipolar boundary‐layer equations for the conjugate laminar free convection heat transfer in vertical eccentric annuli.

Findings

Numerical results are presented for a fluid of Prandtl number, Pr=0.7 in eccentric annuli. The geometry parameters of NR2 and E (the fluid‐annulus radius ratio and the eccentricity, respectively) have considerable effects on the results.

Practical implications

Applications of the obtained results can be of value in the heat‐exchanger industry, in cooling of underground electric cables, and in cooling small vertical electric motors and generators.

Originality/value

The paper presents results that are not available in the literature for the problem of conjugate laminar free convection in open‐ended vertical eccentric annular channels. Geometry effects having been investigated by considering fluid annuli having radii ratios NR2=0.1 and 0.3, 0.5 and 0.7 and four values of the eccentricity E=0.1, 0.3, 0.5 and 0.7. Moreover, practical ranges of the solid‐fluid conductivity ratio (KR) and the wall thicknesses that are commonly available in pipe standards have been investigated. Such results are very much needed for design purposes of heat transfer equipment.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 17 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 June 2021

Mahyar Ashouri, Mohammad Mehdi Zarei and Ali Moosavi

The purpose of this paper is to investigate the effects of geometrical parameters, eccentricity and perforated fins on natural convection heat transfer in a finned horizontal…

Abstract

Purpose

The purpose of this paper is to investigate the effects of geometrical parameters, eccentricity and perforated fins on natural convection heat transfer in a finned horizontal annulus using three-dimensional lattice Boltzmann flux solver.

Design/methodology/approach

Three-dimensional lattice Boltzmann flux solver is used in the present study for simulating conjugate heat transfer within an annulus. D3Q15 and D3Q7 models are used to solve the fluid flow and temperature field, respectively. The finite volume method is used to discretize mass, momentum and energy equations. The Chapman–Enskog expansion analysis is used to establish the connection between the lattice Boltzmann equation local solution and macroscopic fluxes. To improve the accuracy of the lattice Boltzmann method for curved boundaries, lattice Boltzmann equation local solution at each cell interface is considered to be independent of each other.

Findings

It is found that the maximum heat transfer rate occurs at low fin spacing especially by increasing the fin height and decreasing the internal-cylindrical distance. The effect of inner cylinder eccentricity is not much considerable (up to 5.2% enhancement) while the impact of fin eccentricity is more remarkable. Negative fin eccentricity further enhances the heat transfer rate compared to a positive fin eccentricity and the maximum heat transfer enhancement of 91.7% is obtained. The influence of using perforated fins is more considerable at low fin spacing although some heat transfer enhancements are observed at higher fin spacing.

Originality/value

The originality of this paper is to study three-dimensional natural convection in a finned-horizontal annulus using three-dimensional lattice Boltzmann flux solver, as well as to apply symmetry and periodic boundary conditions and to analyze the effect of eccentric annular fins (for the first time for air) and perforated annular fins (for the first time so far) on the heat transfer rate.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 September 2020

Oktay Çiçek, A. Filiz Baytaş and A. Cihat Baytaş

The purpose of this study is to numerically analyze the mixed convection and entropy generation in an annulus with a rotating heated inner cylinder for single-wall carbon nanotube…

Abstract

Purpose

The purpose of this study is to numerically analyze the mixed convection and entropy generation in an annulus with a rotating heated inner cylinder for single-wall carbon nanotube (SWCNT)–water nanofluid flow using local thermal nonequilibrium (LTNE) model. An examination of the system behavior is presented considering the heat-generating solid phase inside the porous layer partly filled at the inner surface of the outer cylinder.

Design/methodology/approach

The discretized governing equations for nanofluid and porous layer by means of the finite volume method are solved by using the SIMPLE algorithm.

Findings

It is found that the buoyancy force and rotational effect have an important impact on the change of the strength of streamlines and isotherms for nanofluid flow. The minimum average Nusselt number on the inner cylinder is obtained at Ra$_E$ = 10$^4$, and the minimum total entropy generation is found at Re = 400 for given parameters. The entropy generation minimization is determined in case of different nanoparticle volume fractions. It is observed that at the same external Rayleigh numbers, the LTNE condition obtained with internal heat generation is very different from that without heat generation.

Originality/value

To the best of the authors’ knowledge, there is no previous paper presenting mixed convection and entropy generation of SWCNT–water nanofluid in a porous annulus under LTNE condition. The addition of nanoparticles to based fluid leads to a decrease in the value of minimum total entropy generation. Thus, using nanofluid has a significant role in the thermal design and optimization of heat transfer applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 April 2006

O.M. Haddad and M.Q. Al‐Odat

This study seeks to focus on the annular flow between rectangular and equilateral‐triangular ducts under all possible arrangements. The aim of this work is to obtain accurate…

Abstract

Purpose

This study seeks to focus on the annular flow between rectangular and equilateral‐triangular ducts under all possible arrangements. The aim of this work is to obtain accurate prediction of the friction factor of this flow using high‐order finite element method.

Design/methodology/approach

Steady and fully developed laminar flow of incompressible Newtonian fluid in an annulus of variable cross‐sectional geometry is investigated numerically. Accurate prediction of the friction factor of this flow was obtained using high‐order finite element method.

Findings

The results were in agreement with already published findings in the literature. It was found that a higher annular area ratio will lead to a monotonic increase in fRe value in the case of regular annuli, and will lead to an increase followed by a decrease in fRe value in the case of irregular annuli. Also, it was, found that irregular annuli have lower fRe value than regular annuli, and that the square‐in‐triangle case has the lowest fRe value, whereas the square‐in‐square case has the highest fRe value.

Originality/value

Accurate prediction of the friction factor of the laminar flow in irregular annuli was obtained. Also, the obtained results can be utilized to optimize the annular geometries under consideration. In addition, the obtained results can lead to the design of more efficient heat exchangers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 16 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 October 2014

M. Sheikholeslami, R. Ellahi, Mohsan Hassan and Soheil Soleimani

The purpose of this paper is to study the effects of natural convection heat transfer in a cold outer circular enclosure containing a hot inner elliptic circular cylinder. The…

1068

Abstract

Purpose

The purpose of this paper is to study the effects of natural convection heat transfer in a cold outer circular enclosure containing a hot inner elliptic circular cylinder. The fluid in the enclosure is Cu-water nanofluid. The main emphasis is to find the numerical treatment for the said mathematical model. The effects of Rayleigh number, inclined angle of elliptic inner cylinder, effective of thermal conductivity and viscosity of nanofluid, volume fraction of nanoparticles on the flow and heat transfer characteristics have been examined.

Design/methodology/approach

A very effective and higher order numerical scheme Control Volume-based Finite Element Method (CVFEM) is used to solve the resulting coupled equations. The numerical investigation is carried out for different governing parameters namely; the Rayleigh number, nanoparticle volume fraction and inclined angle of elliptic inner cylinder. The effective thermal conductivity and viscosity of nanofluid are calculated using the Maxwell-Garnetts (MG) and Brinkman models, respectively.

Findings

The results reveal that Nusselt number increases with an increase of nanoparticle volume fraction, Rayleigh numbers and inclination angle. Also it can be found that increasing Rayleigh number leads to a decrease in heat transfer enhancement. For high Rayleigh number the minimum heat transfer enhancement ratio occurs at.

Originality/value

To the best of the authors’ knowledge, no such analysis is available in the literature which can describe the natural convection heat transfer in a nanofluid filled enclosure with elliptic inner cylinder by means of CVFEM.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 260