Search results

1 – 10 of 34
Article
Publication date: 14 July 2021

Irindu Upasiri, Chaminda Konthesingha, Anura Nanayakkara, Keerthan Poologanathan, Brabha Nagaratnam and Gatheeshgar Perampalam

In this study, the insulation fire ratings of lightweight foamed concrete, autoclaved aerated concrete and lightweight aggregate concrete were investigated using finite element…

216

Abstract

Purpose

In this study, the insulation fire ratings of lightweight foamed concrete, autoclaved aerated concrete and lightweight aggregate concrete were investigated using finite element modelling.

Design/methodology/approach

Lightweight aggregate concrete containing various aggregate types, i.e. expanded slag, pumice, expanded clay and expanded shale were studied under standard fire and hydro–carbon fire situations using validated finite element models. Results were used to derive empirical equations for determining the insulation fire ratings of lightweight concrete wall panels.

Findings

It was observed that autoclaved aerated concrete and foamed lightweight concrete have better insulation fire ratings compared with lightweight aggregate concrete. Depending on the insulation fire rating requirement of 15%–30% of material saving could be achieved when lightweight aggregate concrete wall panels are replaced with the autoclaved aerated or foamed concrete wall panels. Lightweight aggregate concrete fire performance depends on the type of lightweight aggregate. Lightweight concrete with pumice aggregate showed better fire performance among the normal lightweight aggregate concretes. Material saving of 9%–14% could be obtained when pumice aggregate is used as the lightweight aggregate material. Hydrocarbon fire has shown aggressive effect during the first two hours of fire exposure; hence, wall panels with lesser thickness were adversely affected.

Originality/value

Finding of this study could be used to determine the optimum lightweight concrete wall type and the optimum thickness requirement of the wall panels for a required application.

Details

Journal of Structural Fire Engineering, vol. 12 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 25 January 2021

Subhashini Selvaraj and Thirumaran Kesavaperumal

Heat gain in buildings occurs due to heat transfer through the building fabric or envelope, especially the walls and roof. The purpose of this paper is to identify and recommend…

Abstract

Purpose

Heat gain in buildings occurs due to heat transfer through the building fabric or envelope, especially the walls and roof. The purpose of this paper is to identify and recommend the suitable wall materials for better thermal performance in buildings in warm and hot climatic zones of India. As India lies between the tropic of cancer and the equator, the solar radiation from the sun falls more on the walls than the roofs of the buildings. Thus, it is imperative to protect the walls from heat gain to promote thermal comfort in naturally ventilated buildings and reduce the energy loads due to artificial cooling systems in air-conditioned buildings.

Design/methodology/approach

In this paper, an investigation of heat flow characteristics in steady-state and the transient state for five different uninsulated wall structures using computational fluid dynamics (CFD) software has been carried out. The climate conditions at Madurai, India have been considered for this study.

Findings

The findings of the study revealed that aerated autoclaved concrete (AAC) and hollow clay blocks (HCB) for external walls in naturally ventilated buildings in warm climatic regions could improve the building’s thermal performance index and reduce peak indoor operative temperature by about 6°C–7°C. The results of steady-state and transient state analysis were found to be in good agreement with the results of the reviewed literature.

Research limitations/implications

Over the past few decades, only very few architects and builders have been successful in influencing their clients to accept alternate materials such as AAC blocks, HCB, stabilized earth blocks, adobe blocks, fly-ash bricks as an alternate to conventional bricks in an attempt of highlighting their benefits, such as; materials that are easily available, more energy-efficient, can withstand the extreme weather conditions, promote thermal comfort and cost-effective. This paper provides strong evidence that AAC and HCB blocks are the most appropriate materials for improving the thermal performance of envelope walls in regions where the outdoor temperatures are above 40°C.

Originality/value

This paper has made an attempt to identify the appropriate wall materials for effective thermal performance in warm and hot climates. A comparative analysis between five different wall types under the existing solar conditions has been analyzed using CFD simulation study in steady-state and transient conditions under summer conditions and the appropriate wall materials have been suggested. There has been no attempt carried out so far to analyze the thermal performance of different walls using 24 h transient approach in CFD.

Details

Open House International, vol. 46 no. 2
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 17 January 2022

Irindu Upasiri, Chaminda Konthesingha, Anura Nanayakkara, Keerthan Poologanathan, Gatheeshgar Perampalam and Dilini Perera

Light-Gauge Steel Frame (LSF) structures are popular in building construction due to their lightweight, easy erecting and constructability characteristics. However, due to steel…

Abstract

Purpose

Light-Gauge Steel Frame (LSF) structures are popular in building construction due to their lightweight, easy erecting and constructability characteristics. However, due to steel lipped channel sections negative fire performance, cavity insulation materials are utilized in the LSF configuration to enhance its fire performance. The applicability of lightweight concrete filling as cavity insulation in LSF and its effect on the fire performance of LSF are investigated under realistic design fire exposure, and results are compared with standard fire exposure.

Design/methodology/approach

A Finite Element model (FEM) was developed to simulate the fire performance of Light Gauge Steel Frame (LSF) walls exposed to realistic design fires. The model was developed utilising Abaqus subroutine to incorporate temperature-dependent properties of the material based on the heating and cooling phases of the realistic design fire temperature. The developed model was validated with the available experimental results and incorporated into a parametric study to evaluate the fire performance of conventional LSF walls compared to LSF walls with lightweight concrete filling under standard and realistic fire exposures.

Findings

Novel FEM was developed incorporating temperature and phase (heating and cooling) dependent material properties in simulating the fire performance of structures exposed to realistic design fires. The validated FEM was utilised in the parametric study, and results exhibited that the LSF walls with lightweight concrete have shown better fire performance under insulation and load-bearing criteria in Eurocode parametric fire exposure. Foamed Concrete (FC) of 1,000 kg/m3 density showed best fire performance among lightweight concrete filling, followed by FC of 650 kg/m3 and Autoclaved Aerated Concrete (AAC) 600 kg/m3.

Research limitations/implications

The developed FEM is capable of investigating the insulation and load-bearing fire ratings of LSF walls. However, with the availability of the elevated temperature mechanical properties of the LSF wall, materials developed model could be further extended to simulate the complete fire behaviour.

Practical implications

LSF structures are popular in building construction due to their lightweight, easy erecting and constructability characteristics. However, due to steel-lipped channel sections negative fire performance, cavity insulation materials are utilised in the LSF configuration to enhance its fire performance. The lightweight concrete filling in LSF is a novel idea that could be practically implemented in the construction, which would enhance both fire performance and the mechanical performance of LSF walls.

Originality/value

Limited studies have investigated the fire performance of structural elements exposed to realistic design fires. Numerical models developed in those studies have considered a similar approach as models developed to simulate standard fire exposure. However, due to the heating phase and the cooling phase of the realistic design fires, the numerical model should incorporate both temperature and phase (heating and cooling phase) dependent properties, which was incorporated in this study and validated with the experimental results. Further lightweight concrete filling in LSF is a novel technique in which fire performance was investigated in this study.

Details

Journal of Structural Fire Engineering, vol. 13 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 30 October 2023

Oluseyi Julius Adebowale and Justus Ngala Agumba

The United Nations has demonstrated a commitment to preserving the ecosystem through its 2030 sustainable development goals agenda. One crucial objective of these goals is to…

Abstract

Purpose

The United Nations has demonstrated a commitment to preserving the ecosystem through its 2030 sustainable development goals agenda. One crucial objective of these goals is to promote a healthy ecosystem and discourage practices that harm it. Building materials production significantly contributes to the emissions of greenhouse gases. This poses a threat to the ecosystem and prompts a growing demand for sustainable building materials (SBMs). The purpose of this study is to investigate SBMs to determine their utilization in construction operations and the potential impact their application could have on construction productivity.

Design/methodology/approach

A systematic review of the existing literature in the field of SBMs was conducted for the study. The search strings used were “sustainable” AND (“building” OR “construction”) AND “materials” AND “productivity”. A total of 146 articles were obtained from the Scopus database and reviewed.

Findings

Bio-based, cementitious and phase change materials were the main categories of SBMs. Materials in these categories have the potential to substantially contribute to sustainability in the construction sector. However, challenges such as availability, cost, expertise, awareness, social acceptance and resistance to innovation must be addressed to promote the increased utilization of SBMs and enhance construction productivity.

Originality/value

Many studies have explored SBMs, but there is a dearth of studies that address productivity in the context of SBMs, which leaves a gap in understanding. This study addresses this gap by drawing on existing studies to determine the potential implications that using SBMs could have on construction productivity.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 6 October 2020

Franco Muleya, Bodwin Mulenga, Sambo Lyson Zulu, Sunday Nwaubani, Chipozya Kosta Tembo and Henry Mushota

This study aimed to investigate the suitability and cost-benefit of using copper tailings as partial replacement of sand in concrete production. The study was motivated by the…

Abstract

Purpose

This study aimed to investigate the suitability and cost-benefit of using copper tailings as partial replacement of sand in concrete production. The study was motivated by the accumulation and non-use of copper tailings in dams among them tailing dam 25 also known as TD 25 in Kitwe city of the Copperbelt province in Zambia that take up approximately 111 hectares of unused land.

Design/methodology/approach

Laboratory experimental approach of concrete production based on water/cement ratios of 0.3 and 0.5 was used because this was an exploratory study designed to establish the primary performance of concrete. In total, 30 concrete cubes were cast based on the two water-cement ratios. In total, 0% to 30% partial sand replacement with copper tailings was used in both mixes with the 0% copper tailings replacement being the control mix and reference point. Other concrete tests included workability, density, compressive strength and element composition analysis.

Findings

Results revealed that copper tailings from TD 25 were suitable for partial replacement of sand in concrete. Thirty per cent of sand replacement with copper tailings was established as the maximum replacement amount to produce optimum compressive strength values from both mixes. The drier mix of 0.3 water-cement ratios produced higher compressive strength results of 23 MPa at 28 days of concrete curing with 2.34% as optimum concrete cost reduction.

Practical implications

The research results provide the cost-benefit analysis and savings that can be attained from using cheaper copper tailings based concrete. The study further provided the quantity of land available for development arising from absorption of copper tailings as a sustainable construction material. The local authority now has statistics and numerical values that it can use to absorb copper tailings as a concrete raw material.

Originality/value

The study provides guidance on optimum concrete grade produced and cost reduction details of copper tailing-based concrete to support for local authorities in suitable land wand waste management using real data.

Article
Publication date: 11 June 2019

Kate Krueger, Adam Stoker and Gabrielle Gaustad

The construction, use and demolition of buildings carry enormous environmental burdens. As one step to reduce a building’s environmental impact, green building design guidelines…

1135

Abstract

Purpose

The construction, use and demolition of buildings carry enormous environmental burdens. As one step to reduce a building’s environmental impact, green building design guidelines and certification programs, such as Leadership in Energy and Environmental Design, Cradle to Cradle and the Whole Building Design Guide, promote the specification of alternative, non-traditional building materials. Alternative materials carry a variety of potential benefits: reducing the amount of energy and other resources needed to create building materials; creating healthier indoor and outdoor environments; diverting or reducing waste from landfills; reducing the use of scarce, critical or economically volatile materials; and spurring innovation in the building industry. However, a lack of clarity surrounds alternative materials and creates a barrier to their usage. The purpose of this paper is to review definitions of alternative materials in various design guidelines in order to provide context to their specification and usage.

Design/methodology/approach

Through a survey of green building programs and guidelines, existing literature on alternative materials, and life-cycle assessment using multiple inventory databases, this study tackles the following questions: what constitutes an alternative building material; what are the current barriers to their specification; how are they specified in the most common design guidelines; and do alternative building materials present a “greener” alternative?

Findings

These results show that while often alternative materials do in fact show promise for reducing environmental impacts of the built environment, by how much can be a challenging question to quantify and depends on a variety of factors. While many green building guides and certification systems provide recommendations for use of alternative materials, the sheer diversity and uncertainty of these systems coupled with the complexity in understanding their impacts still present a significant barrier to their specification. Much work remains in a variety of disciplines to tackle these barriers. A clear emphasis should be on better understanding their environmental impacts, particularly with respect to the context within the built environment that their specification will provide energy, resource and emission savings. Other key areas of significant work include reducing costs, removing regulatory and code barriers, and educating designers, consumers, and end-users.

Originality/value

Alternative materials are defined and specified in a diversity of contexts leaving the design and construction communities hesitant to promote their use; other work has found this to be a key barrier to their widespread usage. By compiling definitions, barriers and design guidelines instructions while also exploring analytically the benefits of specific cases, this work provides a foundation for better understanding where new, more sustainable materials can be successfully specified.

Details

Smart and Sustainable Built Environment, vol. 8 no. 4
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 5 December 2023

Balamurali Kanagaraj, N. Anand, Johnson Alengaram and Diana Andrushia

The present work focuses on evaluating the physical and mechanical characteristics of geopolymer concrete (GPC) by replacing the sodium silicate waste (SSW) in place of…

Abstract

Purpose

The present work focuses on evaluating the physical and mechanical characteristics of geopolymer concrete (GPC) by replacing the sodium silicate waste (SSW) in place of traditional river sand. The aim is to create eco-friendly concrete that mitigates the depletion of conventional river sand and conserves natural resources. Additionally, the study seeks to explore how the moisture content of filler materials affects the performance of GPC.

Design/methodology/approach

SSW obtained from the sodium silicate industry was used as filler material in the production of GPC, which was cured at ambient temperature. Instead of the typical conventional river sand, SSW was substituted at 25 and 50% of its weight. Three distinct moisture conditions were applied to both river sand and SSW. These conditions were classified as oven dry (OD), air dry (AD) and saturated surface dry (SSD).

Findings

As the proportion of SSW increased, there was a decrease in the slump of the GPC. The setting time was significantly affected by the higher percentage of SSW. The presence of angular-shaped SSW particles notably improved the compressive strength of GPC when replacing a portion of the river sand with SSW. When exposed to elevated temperatures, the performance of the GPC with SSW exhibited similar behavior to that of the mix containing conventional river sand, but it demonstrated a lower residual strength following exposure to elevated temperatures.

Originality/value

Exploring the possible utilization of SSW as a substitute for river sand in GPC, and its effects on the performance of the proposed mix. Analyzing, how varying moisture conditions affect the performance of GPC containing SSW. Evaluating the response of the GPC with SSW exposed to elevated temperatures in contrast to conventional river sand.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 27 February 2023

Irindu Upasiri, Chaminda Konthesingha, Anura Nanayakkara and Keerthan Poologanathan

Elevated temperature material properties are essential in predicting structural member's behavior in high-temperature exposures such as fire. Even though experimental…

Abstract

Purpose

Elevated temperature material properties are essential in predicting structural member's behavior in high-temperature exposures such as fire. Even though experimental methodologies are available to determine these properties, advanced equipment with high costs is required to perform those tests. Therefore, performing those experiments frequently is not feasible, and the development of numerical techniques is beneficial. A numerical technique is proposed in this study to determine the temperature-dependent thermal properties of the material using the fire test results based on the Artificial Neural Network (ANN)-based Finite Element (FE) model.

Design/methodology/approach

An ANN-based FE model was developed in the Matlab program to determine the elevated temperature thermal diffusivity, thermal conductivity and the product of specific heat and density of a material. The temperature distribution obtained from fire tests is fed to the ANN-based FE model and material properties are predicted to match the temperature distribution.

Findings

Elevated temperature thermal properties of normal-weight concrete (NWC), gypsum plasterboard and lightweight concrete were predicted using the developed model, and good agreement was observed with the actual material properties measured experimentally. The developed method could be utilized to determine any materials' elevated temperature material properties numerically with the adequate temperature distribution data obtained during a fire or heat transfer test.

Originality/value

Temperature-dependent material properties are important in predicting the behavior of structural elements exposed to fire. This research study developed a numerical technique utilizing ANN theories to determine elevated temperature thermal diffusivity, thermal conductivity and product of specific heat and density. Experimental methods are available to evaluate the material properties at high temperatures. However, these testing equipment are expensive and sophisticated; therefore, these equipment are not popular in laboratories causing a lack of high-temperature material properties for novel materials. However conducting a fire test to evaluate fire performance of any novel material is the common practice in the industry. ANN-based FE model developed in this study could utilize those fire testing results of the structural member (temperature distribution of the member throughout the fire tests) to predict the material's thermal properties.

Details

Journal of Structural Fire Engineering, vol. 14 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 1 July 1969

The Secretary of State after consultation with the Ceramics, Glass and Mineral Products Industry Training Board and with organisations and associations of organisations appearing…

Abstract

The Secretary of State after consultation with the Ceramics, Glass and Mineral Products Industry Training Board and with organisations and associations of organisations appearing to be representative respectively of substantial numbers of employers engaging in the activities hereinafter mentioned and of substantial numbers of persons employed in those activities and with a body established for the purpose of carrying on under national ownership an industry in which the said activities are carried on to a substantial extent and in exercise of her powers under section 9 of the Industrial Training Act 1964(a) and of all other powers enabling her in that behalf hereby makes the following Order :—

Details

Managerial Law, vol. 6 no. 4
Type: Research Article
ISSN: 0309-0558

Article
Publication date: 1 March 1973

The Secretary of State after consultation with the Construction Industry Training Board and with organisations and associations of organisations appearing to be representative…

Abstract

The Secretary of State after consultation with the Construction Industry Training Board and with organisations and associations of organisations appearing to be representative respectively of substantial numbers of employers engaging in the activities hereinafter mentioned and of substantial numbers of persons employed in those activities and with the bodies established for the purpose of carrying on under national ownership industries in which the said activities are carried on to a substantial extent and in exercise of powers conferred by section 9 of the Industrial Training Act 1964(a) and now vested in him(b), and of all other powers enabling him in that behalf hereby makes the following Order:—

Details

Managerial Law, vol. 13 no. 6
Type: Research Article
ISSN: 0309-0558

1 – 10 of 34