Search results

1 – 10 of 412
Article
Publication date: 2 March 2023

Bahareh Nikmehr, Bidur Kafle and Riyadh Al-Ameri

This study aimed to review various existing methods for improving the quality of recycled concrete aggregates (RCAs) as a possible substitution for natural aggregates (NAs) in…

Abstract

Purpose

This study aimed to review various existing methods for improving the quality of recycled concrete aggregates (RCAs) as a possible substitution for natural aggregates (NAs) in concrete. It is vital as the old paste attached to the RCA weakens its structure. It is due to the porous structure of the RCA with cracks, weakening the interfacial transition zone (ITZ) between the RCA and binding material, negatively impacting the concrete's properties. To this end, various methods for reinforcement of the RCA, cleaning the RCA's old paste and enhancing the quality of the RCA-based concrete without RCA modification are studied in terms of environmental effects, cost and technical matters. Furthermore, this research sought to identify gaps in knowledge and future research directions.

Design/methodology/approach

The review of the relevant journal papers revealed that various methods exist for improving the properties of RCAs and RCA-based concrete. A decision matrix was developed and implemented for ranking these techniques based on environmental, economic and technical criteria.

Findings

The identified methods for reinforcement of the RCA include accelerated carbonation, bio deposition, soaking in polymer emulsions, soaking in waterproofing admixture, soaking in sodium silicate, soaking in nanoparticles and coating with geopolymer slurry. Moreover, cleaning the RCA's old paste is possible using acid, water, heating, thermal and mechanical treatment, thermo-mechanical and electro-dynamic treatment. Added to these treatment techniques, using RCA in saturated surface dry (SSD) mixing approaches and adding fibres or pozzolana enhance the quality of the RCA-based concrete without RCA modification. The study ranked these techniques based on environmental, economic and technical criteria. Ultimately, adding fibres, pozzolana and coating RCA with geopolymer slurry were introduced as the best techniques based on the nominated criteria.

Practical implications

The study supported the need for better knowledge regarding the existing treatment techniques for RCA improvement. The outcomes of this research offer an understanding of each RCA enrichment technique's importance in environmental, economic and technical criteria.

Originality/value

The practicality of the RCA treatment techniques is based on economic, environmental and technical specifications for rating the existing treatment techniques.

Details

Smart and Sustainable Built Environment, vol. 13 no. 3
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 4 January 2024

Ernest Mbamalu Ezeh, Ezeamaku U Luvia and Onukwuli O D

Gourd fibres (GF) are a natural biodegradable fibre material with excellent mechanical properties and high tensile strength. The use of natural fibres in composite materials has…

Abstract

Purpose

Gourd fibres (GF) are a natural biodegradable fibre material with excellent mechanical properties and high tensile strength. The use of natural fibres in composite materials has gained popularity in recent years due to their various advantages, including renewability, low cost, low density and biodegradability. Gourd fibre is one such natural fibre that has been identified as a potential reinforcement material for composites. However, it has low surface energy and hydrophobic nature, which makes it difficult to bond with matrix materials such as polyester. To overcome this problem, chemically adapted gourd fibre has been proposed as a solution. Chemical treatment is one of the most widely used methods to improve the properties of natural fibres. This research evaluates the feasibility and effectiveness of incorporating chemically adapted gourd fibre into polyester composites for industrial fabrication. The purpose of this study is to examine the application of chemically modified GF in the production of polyester composite engineering materials.

Design/methodology/approach

This work aims to evaluate the effectiveness of chemically adapted gourd fibre in improving the adhesion of gourd fibre with polyester resin in composite fabrication by varying the GF from 5 to 20 wt.%. The study involves the preparation of chemically treated gourd fibre through surface modification using sodium hydroxide (NaOH), permanganate (KMnO4) and acetic acid (CH3COOH) coupling agents. The mechanical properties of the modified fibre and composites were investigated. It was then characterized using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) to determine the changes in surface morphology and functional groups.

Findings

FTIR characterization showed that NaOH treatment caused cellulose depolymerization and caused a significant increase in the hydroxyl and carboxyl groups, showing improved surface functional groups; KMnO4 treatment oxidized the fibre surface and caused the formation of surface oxide groups; and acetic acid treatment induced changes that primarily affected the ester and hydroxyl groups. SEM study showed that NaOH treatment changed the surface morphology of the gourd fibre, introduced voids and reduced hydrophilic tendencies. The tensile strength of the modified gourd fibres increased progressively as the concentration of the modification chemicals increased compared to the untreated fibres.

Originality/value

This work presents the designed composite with density, mechanical properties and microstructure, showing remarkable improvements in the engineering properties. An 181.5% improvement in tensile strength and a 56.63% increase in flexural strength were got over that of the unreinforced polyester. The findings from this work will contribute to the understanding of the potential of chemically adapted gourd fibre as a reinforcement material for composites and provide insights into the development of sustainable composite materials.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 19 August 2022

Yuting Lu, Wanwan Fu, hao Ren, Shifang Wu, Jiesheng Liu and Hao Peng

The purpose of this paper is to develop a high-performance composite emulsion cement waterproof coating. The coating has excellent durability and is effective in protecting cement…

Abstract

Purpose

The purpose of this paper is to develop a high-performance composite emulsion cement waterproof coating. The coating has excellent durability and is effective in protecting cement mortar substrates from harmful ions.

Design/methodology/approach

The polymer cement waterproof coatings with different emulsion compounding ratios were tested for mechanical properties and water resistance after alkali immersion, water immersion, thermal aging and UV aging, and the coatings were analyzed by infrared spectroscopy after aging to evaluate its durability. Meanwhile, the coating that presents favorable durability was applied to cement mortar test blocks. The protective effect of the coating on the test blocks was tested by immersion method, and X-ray diffraction analysis was performed on the eroded test blocks.

Findings

The coating with neoprene latex/acrylate latex weight ratio of 90/10 presents favorable durability and has superior overall performance. Besides, when it is applied to cement mortar blocks, the coatings effectively reduced the erosive effect of harmful ions on cement mortar blocks, resulting in much lower mass change ratios and less internal structural damage of the blocks significantly.

Originality/value

The obtained coating will be of great application potential for use in building waterproofing construction. Moreover, the coating can practically prevent chloride ions and sulfate ions from penetrating cement-based materials.

Details

Pigment & Resin Technology, vol. 53 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 12 February 2024

Bataa Sayed Mohamed Mazen, Badawi Mohamed Ismail, Rushdya Rabee Ali Hassan, Mahmoud Ali and Wael S. Mohamed

The purpose of this study is to detect the effect of some natural cellulosic polymers in their nano forms with the addition of zinc oxide nanoparticles on restoring the lost…

Abstract

Purpose

The purpose of this study is to detect the effect of some natural cellulosic polymers in their nano forms with the addition of zinc oxide nanoparticles on restoring the lost mechanical strength of degraded papyrus without any harmful effects on the inks.

Design/methodology/approach

In the current study, the USB digital microscopy, scanning electron microscope, measurement of mechanical properties (tensile and elongation), pH measurement, color change and infrared spectroscopy were undertaken for the samples before and after treatment and aging.

Findings

In the current study, the USB digital microscopy, scanning electron microscope, measurement of mechanical properties (tensile and elongation), pH measurement, color change and infrared spectroscopy were undertaken for the samples before and after treatment and aging.

Originality/value

The effect of strengthening materials was studied on cellulose and carbon ink, which makes this study closer to reality as the manuscript is the consistent structure of cellulose and inks, whereas most of the literature stated the impact of consolidation materials on the strengthening the cellulosic supports without attention to their impact on inks.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 26 December 2023

Ting Dai and Chang Tao

For a thermal protection system (TPS) of long endurance hypersonic flight vehicle (HFV), its thermal insulation property not only determines by the manufactured morphology but…

Abstract

Purpose

For a thermal protection system (TPS) of long endurance hypersonic flight vehicle (HFV), its thermal insulation property not only determines by the manufactured morphology but also changes along time. A thermal conductivity prediction model for aerogel considering heat treatment effect is carried out and applied to solve the heat conduction problem of a TPS. The aim of this study is to provide theoretical and numerical references for further development of aerogels applying to TPSs.

Design/methodology/approach

A thermal conductivity prediction model for aerogel is established considering treatment effect. The heat conduction problem of a TPS is derived and solved by combining the differential quadrature method and the Runge–Kutta method. The prediction results of aerogel thermal conductivities are verified by comparing with those in literature, while the calculated temperature field of TPS is verified by comparing with that by ABAQUS.

Findings

Numerical results show that when applying the current prediction model, the calculated high temperature area in the aerogel layer is narrowed due to the decrease of the thermal conductivity during heat treatment process.

Originality/value

This study will be beneficial to carry out the precise design of TPS for long endurance HFVs.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 April 2024

Amin Barzegar, Mohammadreza Farahani and Amirreza Gomroki

Material extrusion-based additive manufacturing is a prominent manufacturing technique to fabricate complex geometrical three-dimensional (3D) parts. Despite the indisputable…

Abstract

Purpose

Material extrusion-based additive manufacturing is a prominent manufacturing technique to fabricate complex geometrical three-dimensional (3D) parts. Despite the indisputable advantages of material extrusion-based technique, the poor surface and subsurface integrity hinder the industrial application of this technology. The purpose of this study is introducing the hot air jet treatment (HAJ) technique for surface treatment of additive manufactured parts.

Design/methodology/approach

In the presented research, novel theoretical formulation and finite element models are developed to study and model the polishing mechanism of printed parts surface through the HAJ technique. The model correlates reflow material volume, layer width and layer height. The reflow material volume is a function of treatment temperature, treatment velocity and HAJ velocity. The values of reflow material volume are obtained through the finite element modeling model due to the complexity of the interactions between thermal and mechanical phenomena. The theoretical model presumptions are validated through experiments, and the results show that the treatment parameters have a significant impact on the surface characteristics, hardness and dimensional variations of the treated surface.

Findings

The results demonstrate that the average value of error between the calculated theoretical results and experimental results is 14.3%. Meanwhile, the 3D plots of Ra and Rq revealed that the maximum values of Ra and Rq reduction percentages at 255°C, 270°C, 285°C and 300°C treatment temperatures are (35.9%, 33.9%), (77.6%,76.4%), (94%, 93.8%) and (85.1%, 84%), respectively. The scanning electron microscope results illustrate three different treatment zones and the treatment-induced and manufacturing-induced entrapped air relief phenomenon. The measured results of hardness variation percentages and dimensional deviation percentages at different regimes are (8.33%, 0.19%), (10.55%, 0.31%) and (−0.27%, 0.34%), respectively.

Originality/value

While some studies have investigated the effect of the HAJ process on the structural integrity of manufactured items, there is a dearth of research on the underlying treatment mechanism, the integrity of the treated surface and the subsurface characteristics of the treated surface.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 7 February 2024

Chinkle Kaur and Jasleen Kaur

Millets are ancient grains, following wheat, that have been a fundamental source of human sustenance. These are nutrient-rich small-seeded grains that have gained prominence and…

Abstract

Purpose

Millets are ancient grains, following wheat, that have been a fundamental source of human sustenance. These are nutrient-rich small-seeded grains that have gained prominence and admiration globally due to their super resilience in diverse climates and significant nutritional benefits. As millets are renowned for their nutritional richness, the demand for millet-based products increases. Hence, this paper aims in identifying the growing need for innovative processing techniques that not only preserve their nutritional content but also extend their shelf life.

Design/methodology/approach

In traditional times, heat was the only means of cooking and processing of the foods, but the amount of damage they used to cause to the sensorial and nutritional properties was huge. Millets’ sensitivity toward heat poses a challenge, as their composition is susceptible to disruption during various heat treatments and manufacturing processes. To cater to this drawback while ensuring the prolonged shelf life and nutrient preservation, various innovative approaches such as cold plasma, infrared technology and high hydrostatic pressure (HPP) processing are being widely used. These new methodologies aim on inactivating the microorganisms that have been developed within the food, providing the unprocessed, raw and natural form of nutrients in food products.

Findings

Among these approaches, nonthermal technology has emerged as a key player that prioritizes brief treatment periods and avoids the use of high temperatures. Nonthermal techniques (cold plasma, infrared radiation, HPP processing, ultra-sonication and pulsed electric field) facilitate the conservation of millet’s nutritional integrity by minimizing the degradation of heat-sensitive nutrients like vitamins and antioxidants. Acknowledging the potential applications and processing efficiency of nonthermal techniques, the food industry has embarked on substantial investments in this technology. The present study provides an in-depth exploration of the array of nonthermal technologies used in the food industry and their effects on the physical and chemical composition of diverse millet varieties.

Originality/value

Nonthermal techniques, compared to conventional thermal methods, are environmentally sound processes that contribute to energy conservation. However, these conveniences are accompanied by challenges, and this review not only elucidates these challenges but also focuses on the future implications of nonthermal techniques.

Article
Publication date: 28 March 2024

Zhong Jin, Xiang Li, Feng He, Fangting Liu, Jinyu Li and Junhui Li

The performance of oil-filled pressure cores is very much affected by the corrugated diaphragm and the oil filling volume. The purpose of this paper is to show the effects of…

Abstract

Purpose

The performance of oil-filled pressure cores is very much affected by the corrugated diaphragm and the oil filling volume. The purpose of this paper is to show the effects of different corrugated diaphragms, different oil filling volumes and different treatments of the corrugated diaphragms on the performance of pressure sensors.

Design/methodology/approach

Pressure-sensitive cores with different diaphragm diameters, different diaphragm ripple numbers and different oil filling volumes are produced, and thermal cycling is introduced to improve the diaphragm performance, and finally the performance of each pressure-sensitive core is tested and the test data are analyzed and compared.

Findings

The experimental results show that the larger the diameter of the corrugated diaphragm used for encapsulation, the better the performance. For pressure-sensitive cores using smaller diameter corrugated diaphragms, the performance of one corrugation is better than that of two corrugations. When the number of corrugations and the diameter are the same size, the performance of the outer ring of the diaphragm with concave corrugations is better than that with convex corrugations. At the same time, the diaphragm after thermal cycling treatment and appropriate reduction of encapsulated oil filling can improve the performance of the pressure-sensitive core.

Originality/value

By exploring the effects of corrugated diaphragm and oil filling volume on the performance of oil-filled pressure cores, the design of oil-filled pressure sensors can be guided to improve sensor performance.

Details

Sensor Review, vol. 44 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 19 January 2024

Sobhan Pandit, Milan K. Mondal, Dipankar Sanyal, Nirmal K. Manna, Nirmalendu Biswas and Dipak Kumar Mandal

This study aims to undertake a comprehensive examination of heat transfer by convection in porous systems with top and bottom walls insulated and differently heated vertical walls…

Abstract

Purpose

This study aims to undertake a comprehensive examination of heat transfer by convection in porous systems with top and bottom walls insulated and differently heated vertical walls under a magnetic field. For a specific nanofluid, the study aims to bring out the effects of different segmental heating arrangements.

Design/methodology/approach

An existing in-house code based on the finite volume method has provided the numerical solution of the coupled nondimensional transport equations. Following a validation study, different explorations include the variations of Darcy–Rayleigh number (Ram = 10–104), Darcy number (Da = 10–5–10–1) segmented arrangements of heaters of identical total length, porosity index (ε = 0.1–1) and aspect ratio of the cavity (AR = 0.25–2) under Hartmann number (Ha = 10–70) and volume fraction of φ = 0.1% for the nanoparticles. In the analysis, there are major roles of the streamlines, isotherms and heatlines on the vertical mid-plane of the cavity and the profiles of the flow velocity and temperature on the central line of the section.

Findings

The finding of a monotonic rise in the heat transfer rate with an increase in Ram from 10 to 104 has prompted a further comparison of the rate at Ram equal to 104 with the total length of the heaters kept constant in all the cases. With respect to uniform heating of one entire wall, the study reveals a significant advantage of 246% rate enhancement from two equal heater segments placed centrally on opposite walls. This rate has emerged higher by 82% and 249%, respectively, with both the segments placed at the top and one at the bottom and one at the top. An increase in the number of centrally arranged heaters on each wall from one to five has yielded 286% rate enhancement. Changes in the ratio of the cavity height-to-length from 1.0 to 0.2 and 2 cause the rate to decrease by 50% and increase by 21%, respectively.

Research limitations/implications

Further research with additional parameters, geometries and configurations will consolidate the understanding. Experimental validation can complement the numerical simulations presented in this study.

Originality/value

This research contributes to the field by integrating segmented heating, magnetic fields and hybrid nanofluid in a porous flow domain, addressing existing research gaps. The findings provide valuable insights for enhancing thermal performance, and controlling heat transfer locally, and have implications for medical treatments, thermal management systems and related fields. The research opens up new possibilities for precise thermal management and offers directions for future investigations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 November 2018

A. Syafiq, A.K. Pandey, Vengadaesvaran Balakrishnan, Syed Shahabuddin and Nasrudin Abd Rahim

This paper aims to investigate the thermal stability and hydrophobicity of difference alkyl chain of silanes with silicon (Si) micro- and nanoparticles.

Abstract

Purpose

This paper aims to investigate the thermal stability and hydrophobicity of difference alkyl chain of silanes with silicon (Si) micro- and nanoparticles.

Design/methodology/approach

Sol-gel methods have been used to design superhydrophobic glass substrates through surface modification by using low-surface-energy Isooctyl trimethoxysilane (ITMS) and Ethyl trimethoxysilane (ETMS) solution. Hierarchical double-rough scale solid surface was built by Si micro- and nanoparticles to enhance the surface roughness. The prepared sol was applied onto glass substrate using dip-coating method and was dried at control temperature of 400°C inside the tube furnace.

Findings

The glass substrate achieved the water contact angle as high as 154 ± 2° and 150.4 ± 2° for Si/ITMS and Si/ETMS films, respectively. The Si/ITMS and Si/ETMS also were equipped with low sliding angle as low as 3° and 5°, respectively. The Si micro- and nanoparticles in the coating system have created nanopillars between them, which will suspend the water droplets. Both superhydrophobic coatings have showed good stability against high temperature up to 200°C as there are no changes in WCA shown by both coatings. Si/ITMS film sustains its superhydrophobicity after impacting with further temperature up to 400°C and turns hydrophobic state at 450°C.

Research limitations/implications

Findings will be useful to develop superhydrophobic coatings with high thermal stability.

Practical implications

Sol method provides a suitable medium for the combination of organic-inorganic network to achieve high hydrophobicity with optimum surface roughness.

Originality/value

Application of different alkyl chain groups of silane resin blending with micro- and nanoparticles of Si pigments develops superhydrophobic coatings with high thermal stability.

Details

Pigment & Resin Technology, vol. 53 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 412