Search results

1 – 10 of over 14000
Article
Publication date: 4 May 2012

Iliana Marinova and Valentin Mateev

The purpose of this paper is to develop an inverse approach for 3D thermal sources determination.

Abstract

Purpose

The purpose of this paper is to develop an inverse approach for 3D thermal sources determination.

Design/methodology/approach

The developed approach is based on the Green's function for Poison's equation. Forward and inverse couple electromagnetic‐thermal field problems are formulated. Finite elements models are built and applied. Thermal field data are acquired by thermo vision camera. The thermal field sources are determined inside of the investigated inaccessible volume object using modeled and measured data with the developed approach.

Findings

The presented method and implemented examples demonstrate the possibilities of the developed approach for inverse source problem solution and determination of thermal field distributions of electrical devices.

Originality/value

The proposed inverse method uses the Green's function for Poison's equation for solution of thermal field problem taking into account the couple electromagnetic‐thermal problems. Proposed inverse method is very fast, accurate and can be used in many practical activities for electrical current determination and visualization in inaccessible regions only by measured external thermal field. Thermal field data needed for the method are easily acquired by thermo vision camera.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 October 2022

Qiang Fu and Xiaojuan Lv

The purpose of this study is to analyze the linear induction motor (LIM) thermal field when the motor passes through the discontinuous area of the secondary plate in rail transit…

Abstract

Purpose

The purpose of this study is to analyze the linear induction motor (LIM) thermal field when the motor passes through the discontinuous area of the secondary plate in rail transit operation.

Design/methodology/approach

To study the thermal field when the LIM passes through the discontinuous area of the secondary plate, the two-dimensional (2D) electromagnetic field model of the motor is first established to calculate and analyze the electromagnetic field of the LIM, and then the motor thermal field is calculated according to the calculation results of the motor electromagnetic field. Finally, the heat source (the motor loss) and the heat dissipation coefficient are added to the thermal field calculation model to calculate the motor thermal field.

Findings

This study found that the discontinuity of the secondary board would lead to changes in the electromagnetic field of the linear induction motor to change, which would reduce the motor efficiency and increase the loss, resulting in a sudden increase in the temperature field of the motor.

Originality/value

The LIM temperature field calculation when the LIM passes through the discontinuous area of the secondary board could provide an early warning for the potential risks of the LIM in rail transit applications.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 April 2018

G.P. Ashwinkumar, C. Sulochana and S.P. Samrat

The purpose of this paper is to investigate the momentum, heat and mass transfer characteristics of magnetic-nanofluid flow past a vertical plate embedded in a porous medium…

Abstract

Purpose

The purpose of this paper is to investigate the momentum, heat and mass transfer characteristics of magnetic-nanofluid flow past a vertical plate embedded in a porous medium filled with ferrous nanoparticles. The analysis is carried out in the presence of pertinent physical parameters such as aligned magnetic field, thermal radiation, chemical reaction, radiation absorption, heat source/sink.

Design/methodology/approach

The flow governing PDEs are transformed into ODEs using appropriate conversions. Further, the set of ODEs is solved analytically using the perturbation technique. The flow quantities such as velocity, thermal and concentration fields are discussed under the influence of above-mentioned pertinent physical parameters with the assistance of graphical depictions. Moreover, the friction factor, local Nusselt and Sherwood number are discussed in tabular form.

Findings

The results indicate that flow and thermal transport phenomenon is more effective in the case of the aligned magnetic field as compared with the transverse magnetic field. Also, the nanoparticle volume fraction plays a vital role in controlling the wall friction and heat transfer performance. The validation of the obtained results is done by comparing them with the results of various numerical techniques, and hence found them in excellent agreement.

Originality/value

In present days, the external magnetic fields are very effective to set the thermal and physical properties of magnetic-nanofluids and regulate the flow and heat transfer characteristics. The strength of the applied magnetic field affects the thermal conductivity of magnetic-nanofluids and makes it aeolotropic. With this incentive, the authors investigated the flow and heat transfer characteristics of electrically conducting magnetic-nanofluids over a vertical surface embedded in a porous medium. The authors discussed the dual nature of ferrous-water nanofluid in the presence of aligned magnetic field and transverse magnetic field cases. The influence of several physical parameters on velocity, thermal and concentration field converses with the succour of graphs.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 28 March 2022

Subhasree Dutta, Somnath Bhattacharyya and Ioan Pop

The purpose of this study is to analyze the nonhomogeneous model on the mixed convection of Al2O3–Fe3O4 Bingham plastic hybrid nanofluid in a ventilated enclosure subject to an…

Abstract

Purpose

The purpose of this study is to analyze the nonhomogeneous model on the mixed convection of Al2O3–Fe3O4 Bingham plastic hybrid nanofluid in a ventilated enclosure subject to an externally imposed uniform magnetic field. Entropy generation and the pressure drop are determined to analyze the performance of the heat transfer. The significance of Joule heating arising due to the applied magnetic field on the heat transfer of the yield stress fluid is described.

Design/methodology/approach

The ventilation in the enclosure of heated walls is created by an opening on one vertical wall through which cold fluid is injected and another opening on the opposite vertical wall through which fluid can flow out.

Findings

This study finds that the inclusion of Fe3O4 nanoparticles with the Al2O3-viscoplastic nanofluid augments the heat transfer. This rate of enhancement in heat transfer is higher than the rate by which the entropy generation is increased as well as the enhancement in the pressure drop. The yield stress has an adverse effect on the heat transfer; however, it favors thermal mixing. The magnetic field, which is acting opposite to the direction of the inlet jet, manifests heat transfer of the viscoplastic hybrid nanofluid. The horizontal jet of cold fluid produces the optimal heat transfer.

Originality/value

The objective of this study is to analyze the impact of the inclined cold jet of viscoplastic electrically conducting hybrid nanofluid on heat transfer from the enclosure in the presence of a uniform magnetic field. The combined effect of hybrid nanoparticles and a magnetic field to enhance heat transfer of a viscoplastic fluid in a ventilated enclosure has not been addressed before.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 January 2024

Sumant Kumar, B.V. Rathish Kumar, S.V.S.S.N.V.G. Krishna Murthy and Deepika Parmar

Thermo-magnetic convective flow analysis under the impact of thermal radiation for heat and entropy generation phenomena is an active research field for understanding the…

Abstract

Purpose

Thermo-magnetic convective flow analysis under the impact of thermal radiation for heat and entropy generation phenomena is an active research field for understanding the efficiency of thermodynamic systems in various engineering sectors. This study aims to examine the characteristics of convective heat transport and entropy generation within an inverted T-shaped porous enclosure saturated with a hybrid nanofluid under the influence of thermal radiation and magnetic field.

Design/methodology/approach

The mathematical model incorporates the Darcy-Forchheimer-Brinkmann model and considers thermal radiation in the energy balance equation. The complete mathematical model has been numerically simulated through the penalty finite element approach at varying values of flow parameters, such as Rayleigh number (Ra), Hartmann number (Ha), Darcy number (Da), radiation parameter (Rd) and porosity value (e). Furthermore, the graphical results for energy variation have been monitored through the energy-flux vector, whereas the entropy generation along with its individual components, namely, entropy generation due to heat transfer, fluid friction and magnetic field, are also presented. Furthermore, the results of the Bejan number for each component are also discussed in detail. Additionally, the concept of ecological coefficient of performance (ECOP) has also been included to analyse the thermal efficiency of the model.

Findings

The graphical analysis of results indicates that higher values of Ra, Da, e and Rd enhance the convective heat transport and entropy generation phenomena more rapidly. However, increasing Ha values have a detrimental effect due to the increasing impact of magnetic forces. Furthermore, the ECOP result suggests that the rising value of Da, e and Rd at smaller Ra show a maximum thermal efficiency of the mathematical model, which further declines as the Ra increases. Conversely, the thermal efficiency of the model improves with increasing Ha value, showing an opposite trend in ECOP.

Practical implications

Such complex porous enclosures have practical applications in engineering and science, including areas like solar power collectors, heat exchangers and electronic equipment. Furthermore, the present study of entropy generation would play a vital role in optimizing system performance, improving energy efficiency and promoting sustainable engineering practices during the natural convection process.

Originality/value

To the best of the authors’ knowledge, this study is the first ever attempted detailed investigation of heat transfer and entropy generation phenomena flow parameter ranges in an inverted T-shaped porous enclosure under a uniform magnetic field and thermal radiation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 February 2021

Leo Lukose and Tanmay Basak

The purpose of this paper is to address various works on mixed convection and proposes 10 unified models (Models 1–10) based on various thermal and kinematic conditions of the…

Abstract

Purpose

The purpose of this paper is to address various works on mixed convection and proposes 10 unified models (Models 1–10) based on various thermal and kinematic conditions of the boundary walls, thermal conditions and/ or kinematics of objects embedded in the cavities and kinematics of external flow field through the ventilation ports. Experimental works on mixed convection have also been addressed.

Design/methodology/approach

This review is based on 10 unified models on mixed convection within cavities. Models 1–5 involve mixed convection based on the movement of single or double walls subjected to various temperature boundary conditions. Model 6 elucidates mixed convection due to the movement of single or double walls of cavities containing discrete heaters at the stationary wall(s). Model 7A focuses mixed convection based on the movement of wall(s) for cavities containing stationary solid obstacles (hot or cold or adiabatic) whereas Model 7B elucidates mixed convection based on the rotation of solid cylinders (hot or conductive or adiabatic) within the cavities enclosed by stationary or moving wall(s). Model 8 is based on mixed convection due to the flow of air through ventilation ports of cavities (with or without adiabatic baffles) subjected to hot and adiabatic walls. Models 9 and 10 elucidate mixed convection due to flow of air through ventilation ports of cavities involving discrete heaters and/or solid obstacles (conductive or hot) at various locations within cavities.

Findings

Mixed convection plays an important role for various processes based on convection pattern and heat transfer rate. An important dimensionless number, Richardson number (Ri) identifies various convection regimes (forced, mixed and natural convection). Generalized models also depict the role of “aiding” and “opposing” flow and combination of both on mixed convection processes. Aiding flow (interaction of buoyancy and inertial forces in the same direction) may result in the augmentation of the heat transfer rate whereas opposing flow (interaction of buoyancy and inertial forces in the opposite directions) may result in decrease of the heat transfer rate. Works involving fluid media, porous media and nanofluids (with magnetohydrodynamics) have been highlighted. Various numerical and experimental works on mixed convection have been elucidated. Flow and thermal maps associated with the heat transfer rate for a few representative cases of unified models [Models 1–10] have been elucidated involving specific dimensionless numbers.

Originality/value

This review paper will provide guidelines for optimal design/operation involving mixed convection processing applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 July 2008

Marcin Lefik and Krzysztof Komęza

This paper aims to present the plan to develop the known algorithm for thermal and electromagnetic coupled problem calculation. This is used for a one‐phase induction motor with…

Abstract

Purpose

This paper aims to present the plan to develop the known algorithm for thermal and electromagnetic coupled problem calculation. This is used for a one‐phase induction motor with locked rotor for nominal and lowered voltage excitation values. It also aims to prepare a calculating method for the average heat transfer coefficient for natural convection from the induction motor housing external face.

Design/methodology/approach

The numerical investigations proposed are based on 3D finite element models for thermal and electromagnetic fields analysis and 3D volume element model for average heat transfer coefficient calculations. The thermal model is experimentally validated.

Findings

The paper provides a numerical method to calculate average heat transfer coefficient for the induction motor housing external faces. This coefficient is shown as a temperature function. Temperature variations in the various parts of the induction motor with locked rotor are calculated. The calculation results are compared with the measurement results.

Research limitations/implications

The average heat transfer coefficient is calculated for a limited range of temperature and for the natural convection case. Electromagnetic field analysis does not include losses in the motor core. These losses could be included in the thermal and electromagnetic fields coupled calculation problem as an additional heat source for the thermal field.

Originality/value

The paper presents a 3D transient thermal field and electromagnetic field coupled problem and proposes a method for calculating the average heat transfer coefficient of natural convection from the housing external face of the induction motor with a locked rotor.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 27 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 14 July 2020

Subhasree Dutta, Somnath Bhattacharyya and Ioan Pop

This study aims to numerically analyse the impact of an inclined magnetic field and Joule heating on the conjugate heat transfer because of the mixed convection of an Al2O3–water…

Abstract

Purpose

This study aims to numerically analyse the impact of an inclined magnetic field and Joule heating on the conjugate heat transfer because of the mixed convection of an Al2O3–water nanofluid in a thick wall enclosure.

Design/methodology/approach

A horizontal temperature gradient together with the shear-driven Flow creates the mixed convection inside the enclosure. The nonhomogeneous model, in which the nanoparticles have a slip velocity because of thermophoresis and Brownian diffusion, is adopted in the present study. The thermal performance is evaluated by determining the entropy generation, which includes the contribution because of magnetic field. A control volume method over a staggered grid arrangement is adopted to compute the governing equations.

Findings

The Lorentz force created by the applied magnetic field has an adverse effect on the flow and thermal field, and consequently, the heat transfer and entropy generation attenuate because of the presence of magnetic force. The Joule heating enhances the fluid temperature but attenuates the heat transfer. The impact of the magnetic field diminishes as the angle of inclination of the magnetic field is increased, and it manifests as the volume fraction of nanoparticles is increased. Addition of nanoparticles enhances both the heat transfer and entropy generation compared to the clear fluid with enhancement in entropy generation higher than the rate by which the heat transfer augments. The average Bejan number and mixing-cup temperature are evaluated to analyse the thermodynamic characteristics of the nanofluid.

Originality/value

This literature survey suggests that the impact of an inclined magnetic field and Joule heating on conjugate heat transfer based on a two-phase model has not been addressed before. The impact of the relative slip velocity of nanoparticles diminishes as the magnetic field becomes stronger.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 December 2023

Priyadharsini Sivaraj and Sivaraj Chinnasamy

This paper aims to examine the thermal transmission and entropy generation of hybrid nanofluid filled containers with solid body inside. The solid body is seen as being both…

Abstract

Purpose

This paper aims to examine the thermal transmission and entropy generation of hybrid nanofluid filled containers with solid body inside. The solid body is seen as being both isothermal and capable of producing heat. A time-dependent non-linear partial differential equation is used to represent the transfer of heat through a solid body. The current study’s objective is to investigate the key properties of nanoparticles, external forces and particular attention paid to the impact of hybrid nanoparticles on entropy formation. This investigation is useful for researchers studying in the area of cavity flows to know features of the flow structures and nature of hybrid nanofluid characteristics. In addition, a detailed entropy generation analysis has been performed to highlight possible regimes with minimal entropy generation rates. Hybrid nanofluid has been proven to have useful qualities, making it an attractive coolant for an electrical device. The findings would help scientists and engineers better understand how to analyse convective heat transmission and how to forecast better heat transfer rates in cutting-edge technological systems used in industries such as heat transportation, power generation, chemical production and passive cooling systems for electronic devices.

Design/methodology/approach

Thermal transmission and entropy generation of hybrid nanofluid are analysed within the enclosure. The domain of interest is a square chamber of size L, including a square solid block. The solid body is considered to be isothermal and generating heat. The flow driven by temperature gradient in the cavity is two-dimensional. The governing equations, formulated in dimensionless primitive variables with corresponding initial and boundary conditions, are worked out by using the finite volume technique with the SIMPLE algorithm on a uniformly staggered mesh. QUICK and central difference schemes were used to handle convective and diffusive elements. In-house code is developed using FORTRAN programming to visualize the isotherms, streamlines, heatlines and entropy contours, which are handled by Tecplot software. The influence of nanoparticles volume fraction, heat generation factor, external magnetic forces and an irreversibility ratio on energy transport and flow patterns is examined.

Findings

The results show that the hybrid nanoparticles concentration augments the thermal transmission and the entropy production increases also while the augmentation of temperature difference results in a diminution of entropy production. Finally, magnetic force has the significant impact on heat transfer, isotherms, streamlines and entropy. It has been observed that the external magnetic force plays a good role in thermal regulations.

Research limitations/implications

Hybrid nanofluid is a desirable coolant for an electrical device. Various nanoparticles and their combinations can be analysed. Ferro-copper hybrid nanofluid considered with the help of prevailing literature review. The research would benefit scientists and engineers by improving their comprehension of how to analyses convective heat transmission and forecast more accurate heat transfer rates in various fields.

Practical implications

Due to its helpful characteristics, ferrous-copper hybrid nanofluid is a desirable coolant for an electrical device. The research would benefit scientists and engineers by improving their comprehension of how to analyse convective heat transmission and forecast more accurate heat transfer rates in cutting-edge technological systems used in sectors like thermal transportation, cooling systems for electronic devices, etc.

Social implications

Entropy generation is used for an evaluation of the system’s performance, which is an indicator of optimal design. Hence, in recent times, it does a good engineering sense to draw attention to irreversibility under magnetic force, and it has an indispensable impact on investigation of electronic devices.

Originality/value

An efficient numerical technique has been developed to solve this problem. The originality of this work is to analyse convective energy transport and entropy generation in a chamber with internal block, which is capable of maintaining heat and producing heat. Effects of irreversibility ratio are scrutinized for the first time. Analysis of convective heat transfer and entropy production in an enclosure with internal isothermal/heat generating blocks gives the way to predict enhanced heat transfer rate and avoid the failure of advanced technical systems in industrial sectors.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 2001

Florin David, Tiberiu Tudorache and Virgiliu Firteanu

This paper presents a 3D numerical modeling of electromagnetic and thermal fields in three‐phase electric arc furnaces. The thermal effect of the foamy slag is studied in the…

Abstract

This paper presents a 3D numerical modeling of electromagnetic and thermal fields in three‐phase electric arc furnaces. The thermal effect of the foamy slag is studied in the first part of the paper. The Joule power density is calculated with an AC electromagnetic analysis and is transferred to the steady state thermal problem as heat source. The second part of the paper presents a numerical analysis of new electromagnetic stirring methods.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 20 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 14000