Search results

1 – 10 of 174
Article
Publication date: 24 September 2024

Zhihao Luo, Yongbo Guo, Yourui Cao, Zheyingzi Zhu, Wan Ma, Songquan Wang and Dekun Zhang

This study aims to study the influence of friction influencing factors between the wire rope and the liner on the safe use of the wire rope, which can provide guidance for the…

Abstract

Purpose

This study aims to study the influence of friction influencing factors between the wire rope and the liner on the safe use of the wire rope, which can provide guidance for the reliability design of the lifting system with strong dynamic response such as high speed, heavy load, etc., and improve the friction-driven stability of the system.

Design/methodology/approach

In this paper, the friction mechanism of wire rope and liner under the condition of excitation is investigated by means of wire rope-liner friction-vibration experimental platform and dynamic viscoelastic test of liner.

Findings

The results show that: With increasing excitation frequency, the friction between the three liner materials (G30, K25, PU) and the wire rope decreased, and the wear of the surface shape of the liners was greater. The dynamic thermomechanical analysis (DMA) test results showed that the viscoelasticity of the three liner materials increased when the frequency was increased.

Research limitations/implications

Wire ropes are widely used in deep shaft hoisting and building elevators. Its operational reliability depends on whether there is sufficient friction between the wire rope and the friction liner, and whether the friction liner has good wear resistance. The study of the friction between the wire rope and the liner influencing factors is of great significance for the safe service of the wire rope.

Practical implications

The related results can provide guidance for the reliability design of lifting systems with strong dynamic response, such as high speed and heavy load, to improve the friction drive stability of the system.

Originality/value

With the increase of mining depth, to improve the transportation efficiency of the hoist used in deep and ultra-deep mines, as well as to ensure the safety and reliability of its operation, it is crucial that the large friction hoisting equipment has sufficient friction between the wire rope and the friction lining, as well as whether the friction lining has a good abrasion resistance.

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 September 2024

Nilesh Kumar and Jatinder Kumar

The purpose of this paper is to investigate the surface integrity features, including surface roughness (SR), recast layer (RL), material migration, topography and wire wear…

Abstract

Purpose

The purpose of this paper is to investigate the surface integrity features, including surface roughness (SR), recast layer (RL), material migration, topography and wire wear pattern in rough and trim-cut wire electric discharge machine (WEDM) of hybrid composite (Al6061-90%/SiC-2.5%/TiB2-7.5%).

Design/methodology/approach

Effects of four important factors, namely, rough-cut history (RCH), pulse on time (Ton), peak current (IP) and wire offset (WO) have been assessed on the responses of interest for trim-cut WEDM. Box–Behnken design (RSM) was used to formulate the experimentation plan. Quantitative indices of surface integrity, namely, SR and RL, and selected samples have been investigated for qualitative analysis, namely, surface topography, material migration and wire wear pattern.

Findings

Ton and IP are found to be most significant, whereas RCH and WO are found insignificant for SR. Ton and WO were found to be the most significant factors affecting RL. After trim cut, an RL of thickness 8.26 µm is observed if the initial rough cut has been accomplished at high discharge energy setting. Whereas the best value of RL thickness, i.e. 5.36 µm, can be realized with low level of RCH. A significant decrease in the presence of foreign materials is recorded, indicating its strong correlation with the discharge energy used during machining.

Originality/value

Investigation on surface integrity features for machining of hybrid composite through rough and trim-cut WEDM has been reported by only a limited number of researchers in the past. This study is attempted at fulfilling few vital gaps by addressing the issues such as evaluation of the efficacy of trim cutting under different discharge energy conditions (using RCH), analysis of wire wear pattern in both rough and trim-cut modes and investigation of the wire breakage phenomenon during machining.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 27 June 2023

Anshuman Kumar, Chandramani Upadhyay, Ram Subbiah and Dusanapudi Siva Nagaraju

This paper aims to investigate the influence of “BroncoCut-X” (copper core-ZnCu50 coating) electrode on the machining of Ti-3Al-2.5V in view of its extensive use in aerospace and…

Abstract

Purpose

This paper aims to investigate the influence of “BroncoCut-X” (copper core-ZnCu50 coating) electrode on the machining of Ti-3Al-2.5V in view of its extensive use in aerospace and medical applications. The machining parameters are selected as Spark-off Time (SToff), Spark-on Time (STon), Wire-speed (Sw), Wire-Tension (WT) and Servo-Voltage (Sv) to explore the machining outcomes. The response characteristics are measured in terms of material removal rate (MRR), average kerf width (KW) and average-surface roughness (SA).

Design/methodology/approach

Taguchi’s approach is used to design the experiment. The “AC Progress V2 high precision CNC-WEDM” is used to conduct the experiments with ϕ 0.25 mm diameter wire electrode. The machining performance characteristics are examined using main effect plots and analysis of variance. The grey-relation analysis and fuzzy interference system techniques have been developed to combine (called grey-fuzzy reasoning grade) the experimental response while Rao-Algorithm is used to calculate the optimal performance.

Findings

The hybrid optimization result is obtained as SToff = 50µs, STon = 105µs, Sw = 7 m/min, WT = 12N and Sv=20V. Additionally, the result is compared with the firefly algorithm and improved gray-wolf optimizer to check the efficacy of the intended approach. The confirmatory test has been further conducted to verify optimization results and recorded 8.14% overall machinability enhancement. Moreover, the scanning electron microscopy analysis further demonstrated effectiveness in the WEDMed surface with a maximum 4.32 µm recast layer.

Originality/value

The adopted methodology helped to attain the highest machinability level. To the best of the authors’ knowledge, this work is the first investigation within the considered parametric range and adopted optimization technique for Ti-3Al-2.5V using the wire-electro discharge machining.

Details

World Journal of Engineering, vol. 21 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 13 September 2024

Gang Li, Shuainan Song, Qun Cai, Biao Wu and Zhichao Wen

For the purpose of saving nickel, this study aims to develop new duplex stainless steel cored wires suitable for wire arc additive manufacturing (WAAM) with the addition of…

Abstract

Purpose

For the purpose of saving nickel, this study aims to develop new duplex stainless steel cored wires suitable for wire arc additive manufacturing (WAAM) with the addition of nitrogen.

Design/methodology/approach

The effect of nitrogen content on the microstructure and mechanical properties of the thin-walled deposits is investigated in detail.

Findings

The microstructure of thin-walled deposits mainly consists of austenite, ferrite and secondary austenite. With increasing nitrogen content, the austenite in the deposited metals increases. The austenite proportion in the bottom region is more than that in the top region of the deposited metals. The χ phase is randomly distributed at the grain boundaries and within ferrite. The σ phase is mainly precipitated at ferrite and austenite grain boundaries. With increasing nitrogen content, the tensile strength of the deposited metals increases, but the impact toughness of the deposited metals deteriorates.

Originality/value

This study proposes new duplex stainless steel cored wires for WAAM, which realizes the objective of saving nickel.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 9 August 2024

Mathias Silmbroth, Norbert Enzinger, Sascha Senck, Karl Radlmayr and Thomas Klein

This study aims to investigate an intersecting single-walled structure fabricated using wire-arc directed energy deposition (waDED). Because of the highly complex geometrical…

Abstract

Purpose

This study aims to investigate an intersecting single-walled structure fabricated using wire-arc directed energy deposition (waDED). Because of the highly complex geometrical features of this structure, characterisation is used to identify potential weak points and provide a benchmark for future complex components.

Design/methodology/approach

A structural component with a process-specific design is built using additive manufacturing of an Al-Mg alloy and analysed using micro-computed tomography. Scans are carried out at different resolutions and subsequently compared to microsections. The chemical composition and hardness are also examined. These investigations provide an enhanced understanding of defects and overall quality of the manufactured parts.

Findings

The results show that very high-quality parts can be achieved using ER5183 alloy, even in intersecting areas. Defects in these regions are primarily caused by converging and diverging waDED paths and discontinuous waDED operations.

Originality/value

In addition to demonstrating the feasibility of complex structures using waDED, this study provides an overview of problem areas and potential improvements in waDED manufacturing.

Details

Rapid Prototyping Journal, vol. 30 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 10 September 2024

Yu Feng, Shaolei Wu, Honglei Nie, Chaochao Peng and Wei Wang

The phenomenon of friction and wear in parallel groove clamps under wind vibration in 10 kV distribution networks represents a significant challenge that can lead to their…

Abstract

Purpose

The phenomenon of friction and wear in parallel groove clamps under wind vibration in 10 kV distribution networks represents a significant challenge that can lead to their failure. This study aims to elucidate the wear mechanism of parallel groove clamps under wind-induced vibration through simulation and experimentation.

Design/methodology/approach

FLUENT software was used to simulate the flow around the conductor and the parallel groove fixture, and the Karman vortex street phenomenon was discussed. The stress fluctuations of each component under breeze vibration conditions were investigated using ANSYS, and fretting experimentations were conducted at varying amplitudes.

Findings

The results demonstrate that the impact of breeze vibration on the internal stress of the parallel groove clamps is considerable. The maximum stress observed on the lower clamping block was found to be up to 300 MPa. As wind speed increased, the maximum vibration frequency was observed to reach 72.6 Hz. Concurrently, as the vibration amplitude increased, the damage in the contact zone of the lower clamping block also increased, with the maximum contact resistance reaching 78.0 µO at a vibration amplitude of 1.2 mm. This was accompanied by a shift in the wear mechanism from adhesive wear to oxidative wear and fatigue wear.

Originality/value

This study presents a comprehensive analysis of the fretting wear phenomenon associated with parallel groove clamps under wind vibration. The findings provide a reference basis for the design and protection of parallel groove clamps.

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 September 2024

Ziwang Xiao, Fengxian Zhu, Lifeng Wang, Rongkun Liu and Fei Yu

As an important load-bearing component of cable-stayed bridge, the cable-stayed cable is an important load-bearing link for the bridge superstructure and the load transferred…

Abstract

Purpose

As an important load-bearing component of cable-stayed bridge, the cable-stayed cable is an important load-bearing link for the bridge superstructure and the load transferred directly to the bridge tower. In order to better manage the risk of the cable system in the construction process, the purpose of this paper is to study a new method of dynamic risk analysis of the cable system of the suspended multi-tower cable-stayed bridge based on the Bayesian network.

Design/methodology/approach

First of all, this paper focuses on the whole process of the construction of the cable system, analyzes the construction characteristics of each process, identifies the safety risk factors in the construction process of the cable system, and determines the causal relationship between the risk factors. Secondly, the prior probability distribution of risk factors is determined by the expert investigation method, and the risk matrix method is used to evaluate the safety risk of cable failure quantitatively. The function expression of risk matrix is established by combining the probability of risk event occurrence and loss level. After that, the topology structure of Bayesian network is established, risk factors and probability parameters are incorporated into the network and then the Bayesian principle is applied to update the posterior probability of risk events according to the new information in the construction process. Finally, the construction reliability evaluation of PAIRA bridge main bridge cable system in Bangladesh is taken as an example to verify the effectiveness and accuracy of the new method.

Findings

The feasibility of using Bayesian network to dynamically assess the safety risk of PAIRA bridge in Bangladesh is verified by the construction reliability evaluation of the main bridge cable system. The research results show that the probability of the accident resulting from the insufficient safety of the cable components of the main bridge of PAIRA bridge is 0.02, which belongs to a very small range. According to the analysis of the risk grade matrix, the risk grade is Ⅱ, which belongs to the acceptable risk range. In addition, according to the reverse reasoning of the Bayesian model, when the serious failure of the cable system is certain to occur, the node with the greatest impact is B3 (cable break) and its probability of occurrence is 82%, that is, cable break is an important reason for the serious failure of the cable system. The factor that has the greatest influence on B3 node is C6 (cable quality), and its probability is 34%, that is, cable quality is not satisfied is the main reason for cable fracture. In the same way, it can be obtained that the D9 (steel wire fracture inside the cable) event of the next level is the biggest incentive of C6 event, its occurrence probability is 32% and E7 (steel strand strength is not up to standard) event is the biggest incentive of D9 event, its occurrence probability is 13%. At the same time, the sensitivity analysis also confirmed that B3, C6, D9 and E7 risk factors were the main causes of risk occurrence.

Originality/value

This paper proposes a Bayesian network-based construction reliability assessment method for cable-stayed bridge cable system. The core purpose of this method is to achieve comprehensive and accurate management and control of the risks in the construction process of the cable system, so as to improve the service life of the cable while strengthening the overall reliability of the structure. Compared with the existing evaluation methods, the proposed method has higher reliability and accuracy. This method can effectively assess the risk of the cable system in the construction process, and is innovative in the field of risk assessment of the cable system of cable-stayed bridge construction, enriching the scientific research achievements in this field, and providing strong support for the construction risk control of the cable system of cable-stayed bridge.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 5 July 2024

Majid Monajjemi and Fatemeh Mollaamin

Early prediction of any type of cancer is important for the treatment of this type of disease, therefore, our target to evaluate whether monitoring early changes in plasma human…

Abstract

Purpose

Early prediction of any type of cancer is important for the treatment of this type of disease, therefore, our target to evaluate whether monitoring early changes in plasma human epidermal growth factor receptor 2 (HER2) levels (using EIS), could help in the treatment of breast cancer or not? Human epidermal growth factor receptor 2 (HER2) overexpression is an important biomarker for treatment selection in earlier stages of cancers. The combined detection of the HER2 gene in plasma for blood cancer provides an important reference index for the prognosis of metastasis to other tissues. For this purpose, the authors fabricated and characterized a model wireless biosensor-based electrochemical impedance spectroscopy (EIS) for detecting HER2 plasma as therapeutics.

Design/methodology/approach

Most sensors generally are fabricated based on a connection between component of the sensors and the external circuits through wires. Although these types of sensors provide suitable sensitivities and also quick responses, the connection wires can be limited to the sensing ability in various devices approximately. Therefore, the authors designed a wireless sensor, which can provide the advantages of in vivo sensing and also long-distance sensing, quickly.

Findings

The biosensor structure was designed for detection of HER2, HER3 and HER-4 from lab-on-chip approach with six units of screen-printed electrode (SPE), which is built of an electrochemical device of gold/silver, silver/silver or carbon electrodes. The results exhibited that the biosensor is completely selective at low concentrations of the plasma and HER2 detection via the standard addition approach has a linearity plot, therefore, by using this type of biosensors HER2 in plasma can be detected.

Originality/value

This is then followed by detecting HER2 in real plasma using standard way which proved to have great linearity (R2 = 0.991) proving that this technique can be used to detect HER2 solution in real patients.

Article
Publication date: 17 September 2024

Jiao Ge, Jiaqi Zhang, Daheng Chen and Tiesheng Dong

The purpose of this paper is to actively calibrate power density to match the application requirements with as small an actuator as possible. So, this paper introduces shape…

Abstract

Purpose

The purpose of this paper is to actively calibrate power density to match the application requirements with as small an actuator as possible. So, this paper introduces shape memory alloy to design variable stiffness elements. Meanwhile, the purpose of this paper is also to solve the problem of not being able to install sensors on shape memory alloy due to volume limitations.

Design/methodology/approach

This paper introduces the design, modeling and control process for a variable stiffness passive ankle exoskeleton, adjusting joint stiffness using shape memory alloy (SMA). This innovative exoskeleton aids the human ankle by adapting the precompression of elastic components by SMA, thereby adjusting the ankle exoskeleton’s integral stiffness. At the same time, this paper constructs a mathematical model of SMA to achieve a dynamic stiffness adjustment function.

Findings

Using SMA as the driving force for stiffness modification in passive exoskeletons introduces several distinct advantages, inclusive of high energy density, programmability, rapid response time and simplified structural design. In the course of experimental validation, this ankle exoskeleton, endowed with variable stiffness, proficiently executed actions like squatting and walking and it can effectively increase the joint stiffness by 0.2 Nm/Deg.

Originality/value

The contribution of this paper is to introduce SMA to adjust the stiffness to actively calibrate power density to match the application requirements. At the same time, this paper constructs a mathematical model of SMA to achieve a dynamic stiffness adjustment function.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 6 August 2024

Hulusi Delibaş and Necdet Geren

The purpose of this study is to produce a low-cost sheet metal forming mold made from the low melting point Bi58Sn42 (bismuth) alloy by using an open-source desktop-type material…

Abstract

Purpose

The purpose of this study is to produce a low-cost sheet metal forming mold made from the low melting point Bi58Sn42 (bismuth) alloy by using an open-source desktop-type material extrusion additive manufacturing system and to evaluate the performance of the additively manufactured mold for low volume sheet metal forming. Thus, it was aimed to develop a fast and inexpensive die tooling methodology for low-volume batch production.

Design/methodology/approach

Initially, the three-dimensional printing experiments were performed to produce the sheet metal forming mold. The encountered problems during the performed three-dimensional printing experiments were analyzed. Accordingly, both tunings in process parameters (extrusion temperature, extrusion multiplier, printing speed, infill percentage, etc.) and customizations on the extruder head of the available material extrusion additive manufacturing system were made to print the Bi58Sn42 alloy properly. Subsequently, the performance of the additively manufactured mold was evaluated according to the dimensional change that occurred on it during the performed pressing operations.

Findings

Results showed that the additively manufactured mold was rigid enough and proved to have sufficient strength in sheet metal forming operations for low-volume production.

Originality/value

Alternative mold production was carried out using open-source material extrusion system for low volume sheet metal part production. Thus, cost effective solution was presented for agile manufacturing.

Details

Rapid Prototyping Journal, vol. 30 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 174