Search results

1 – 10 of 218
Article
Publication date: 4 January 2024

Ernest Mbamalu Ezeh, Ezeamaku U Luvia and Onukwuli O D

Gourd fibres (GF) are a natural biodegradable fibre material with excellent mechanical properties and high tensile strength. The use of natural fibres in composite materials has…

Abstract

Purpose

Gourd fibres (GF) are a natural biodegradable fibre material with excellent mechanical properties and high tensile strength. The use of natural fibres in composite materials has gained popularity in recent years due to their various advantages, including renewability, low cost, low density and biodegradability. Gourd fibre is one such natural fibre that has been identified as a potential reinforcement material for composites. However, it has low surface energy and hydrophobic nature, which makes it difficult to bond with matrix materials such as polyester. To overcome this problem, chemically adapted gourd fibre has been proposed as a solution. Chemical treatment is one of the most widely used methods to improve the properties of natural fibres. This research evaluates the feasibility and effectiveness of incorporating chemically adapted gourd fibre into polyester composites for industrial fabrication. The purpose of this study is to examine the application of chemically modified GF in the production of polyester composite engineering materials.

Design/methodology/approach

This work aims to evaluate the effectiveness of chemically adapted gourd fibre in improving the adhesion of gourd fibre with polyester resin in composite fabrication by varying the GF from 5 to 20 wt.%. The study involves the preparation of chemically treated gourd fibre through surface modification using sodium hydroxide (NaOH), permanganate (KMnO4) and acetic acid (CH3COOH) coupling agents. The mechanical properties of the modified fibre and composites were investigated. It was then characterized using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) to determine the changes in surface morphology and functional groups.

Findings

FTIR characterization showed that NaOH treatment caused cellulose depolymerization and caused a significant increase in the hydroxyl and carboxyl groups, showing improved surface functional groups; KMnO4 treatment oxidized the fibre surface and caused the formation of surface oxide groups; and acetic acid treatment induced changes that primarily affected the ester and hydroxyl groups. SEM study showed that NaOH treatment changed the surface morphology of the gourd fibre, introduced voids and reduced hydrophilic tendencies. The tensile strength of the modified gourd fibres increased progressively as the concentration of the modification chemicals increased compared to the untreated fibres.

Originality/value

This work presents the designed composite with density, mechanical properties and microstructure, showing remarkable improvements in the engineering properties. An 181.5% improvement in tensile strength and a 56.63% increase in flexural strength were got over that of the unreinforced polyester. The findings from this work will contribute to the understanding of the potential of chemically adapted gourd fibre as a reinforcement material for composites and provide insights into the development of sustainable composite materials.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 26 January 2024

Silvia Badini, Serena Graziosi, Michele Carboni, Stefano Regondi and Raffaele Pugliese

This study evaluates the potential of using the material extrusion (MEX) process for recycling waste tire rubber (WTR). By investigating the process parameters, mechanical…

Abstract

Purpose

This study evaluates the potential of using the material extrusion (MEX) process for recycling waste tire rubber (WTR). By investigating the process parameters, mechanical behaviour and morphological characterisation of a thermoplastic polyurethane-waste tire rubber composite filament (TPU-WTR), this study aims to establish a framework for end-of-life tire (ELT) recycling using the MEX technology.

Design/methodology/approach

The research assesses the impact of various process parameters on the mechanical properties of the TPU-WTR filament. Hysteresis analysis and Poisson’s ratio estimation are conducted to investigate the material’s behaviour. In addition, the compressive performance of diverse TPU-WTR triply periodic minimal surface lattices is explored to test the filament suitability for printing intricate structures.

Findings

Results demonstrate the potential of the TPU-WTR filament in developing sustainable structures. The MEX process can, therefore, contribute to the recycling of WTR. Mechanical testing has provided insights into the influence of process parameters on the material behaviour, while investigating various lattice structures has challenged the material’s capabilities in printing complex topologies.

Social implications

This research holds significant social implications addressing the growing environmental sustainability and waste management concerns. Developing 3D-printed sustainable structures using recycled materials reduces resource consumption and promotes responsible production practices for a more environmentally conscious society.

Originality/value

This study contributes to the field by showcasing the use of MEX technology for ELT recycling, particularly focusing on the TPU-WTR filament, presenting a novel approach to sustainable consumption and production aligned with the United Nations Sustainable Development Goal 12.

Article
Publication date: 4 August 2023

Rodrigo Enzo de Prada, Guillermo Rubén Bossio and Mariano Martín Bruno

The purpose of this study is to investigate how the amount of material used and printing parameters affect the mechanical and water sorption properties of acrylonitrile butadiene…

Abstract

Purpose

The purpose of this study is to investigate how the amount of material used and printing parameters affect the mechanical and water sorption properties of acrylonitrile butadiene styrene printed parts.

Design/methodology/approach

The specimens were printed using different printing parameters such as shell number, infill pattern and printing orientation, while accounting for the amount of material used. The mechanical properties of the printed parts were then evaluated using tensile, compression and flexural tests, along with sorption tests.

Findings

The results revealed that the maximum tensile stress of 31.41 MPa was obtained when using 100% infill and a horizontal printing orientation. Similarly, the maximum flexural strength and compression of 40.5 MPa and 100.7 MPa, respectively, were obtained with 100% infill. The printing orientation was found to have a greater impact on mechanical behavior compared to the number of shells or infill patterns. Specifically, the horizontal printing orientation resulted in specimens with at least 25% greater strength compared to the vertical printing orientation. Furthermore, the relationship between the amount of material used and strength was evident in the tensile and flexural tests, which showed a close correlation between the two.

Originality/value

This study’s originality lies in its focus on optimizing the amount of material used to achieve the best strength-to-mass ratio and negligible water infiltration. The findings showed that specimens with two shells and a 60% infill density exhibited the best strength-to-mass ratio.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 September 2023

Ana C. Lopes, Álvaro M. Sampaio and António J. Pontes

With the technological progress, high-performance materials are emerging in the market of additive manufacturing to comply with the advanced requirements demanded for technical…

Abstract

Purpose

With the technological progress, high-performance materials are emerging in the market of additive manufacturing to comply with the advanced requirements demanded for technical applications. In selective laser sintering (SLS), innovative powder materials integrating conductive reinforcements are attracting much interest within academic and industrial communities as promising alternatives to common engineering thermoplastics. However, the practical implementation of functional materials is limited by the extensive list of conditions required for a successful laser-sintering process, related to the morphology, powder size and shape, heat resistance, melt viscosity and others. The purpose of this study is to explore composite materials of polyamide 12 (PA12) incorporating multi-walled carbon nanotubes (MWCNT) and graphene nanoplatelets (GNP), aiming to understand their suitability for advanced SLS applications.

Design/methodology/approach

PA12-MWCNT and PA12-GNP materials were blended through a pre-optimized process of mechanical mixing with various percentages of reinforcement between 0.50 wt.% and 3.00 wt.% and processed by SLS with appropriate volume energy density. Several test specimens were produced and characterized with regard to processability, thermal, mechanical, electrical and morphological properties. Finally, a comparative analysis of the performance of both carbon-based materials was performed.

Findings

The results of this research demonstrated easier processability and higher tensile strength and impact resistance for composites incorporating MWCNT but higher tensile elastic modulus, compressive strength and microstructural homogeneity for GNP-based materials. Despite the decrease in mechanical properties, valuable results of electrical conductivity were obtained with both carbon solutions until 10–6 S/cm.

Originality/value

The carbon-based composites developed in this research allow for the expansion of the applicability of laser-sintered parts to advanced fields, including electronics-related industries that require functional materials capable of protecting sensitive devices against electrostatic discharge.

Details

Rapid Prototyping Journal, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 25 January 2024

Shrushti Maheshwari, Zafar Alam and Sarthak S. Singh

The purpose of this study is to experimentally investigate the large deformation compression characteristics of fused deposition modelling (FDM)-printed poly lactic acid (PLA)…

79

Abstract

Purpose

The purpose of this study is to experimentally investigate the large deformation compression characteristics of fused deposition modelling (FDM)-printed poly lactic acid (PLA), considering the combined effect of infill density and strain rate, and to develop a constitutive viscoplastic model that can incorporate the infill density to predict the experimental result.

Design/methodology/approach

The experimental approach focuses on strain rate-dependent (2.1 × 10−4, 2.1 × 10−3, and 2.1 × 10−2 s−1) compression testing for varied infill densities. Scanning electron microscopy (SEM) imaging of compressed materials is used to investigate deformation processes. A hyperelastic-viscoplastic constitutive model is constructed that can predict mechanical deformations at different strain rates and infill densities.

Findings

The yield stress of PLA increased with increase in strain rate and infill density. However, higher degree of strain-softening response was witnessed for the strain rate corresponding to 2.1 × 10−2 s−1. While filament splitting and twisting were identified as the damage mechanisms at higher strain rates, matrix crazing was observed as the primary deformation mechanism for higher infill density (95%). The developed constitutive model captured yield stress and post-yield softening behaviour of FDM build PLA samples with a high R2 value of 0.99.

Originality/value

This paper addresses the need to analyse and predict the mechanical response of FDM print polymers (PLA) undergoing extensive strain-compressive loading through a hyperelastic-viscoplastic constitutive model. This study links combined effects of the printing parameter (infill density) with the experimental parameter (strain rate).

Article
Publication date: 19 March 2024

Diana Irinel Baila, Filippo Sanfilippo, Tom Savu, Filip Górski, Ionut Cristian Radu, Catalin Zaharia, Constantina Anca Parau, Martin Zelenay and Pacurar Razvan

The development of new advanced materials, such as photopolymerizable resins for use in stereolithography (SLA) and Ti6Al4V manufacture via selective laser melting (SLM…

Abstract

Purpose

The development of new advanced materials, such as photopolymerizable resins for use in stereolithography (SLA) and Ti6Al4V manufacture via selective laser melting (SLM) processes, have gained significant attention in recent years. Their accuracy, multi-material capability and application in novel fields, such as implantology, biomedical, aviation and energy industries, underscore the growing importance of these materials. The purpose of this study is oriented toward the application of new advanced materials in stent manufacturing realized by 3D printing technologies.

Design/methodology/approach

The methodology for designing personalized medical devices, implies computed tomography (CT) or magnetic resonance (MR) techniques. By realizing segmentation, reverse engineering and deriving a 3D model of a blood vessel, a subsequent stent design is achieved. The tessellation process and 3D printing methods can then be used to produce these parts. In this context, the SLA technology, in close correlation with the new types of developed resins, has brought significant evolution, as demonstrated through the analyses that are realized in the research presented in this study. This study undertakes a comprehensive approach, establishing experimentally the characteristics of two new types of photopolymerizable resins (both undoped and doped with micro-ceramic powders), remarking their great accuracy for 3D modeling in die-casting techniques, especially in the production process of customized stents.

Findings

A series of analyses were conducted, including scanning electron microscopy, energy-dispersive X-ray spectroscopy, mapping and roughness tests. Additionally, the structural integrity and molecular bonding of these resins were assessed by Fourier-transform infrared spectroscopy–attenuated total reflectance analysis. The research also explored the possibilities of using metallic alloys for producing the stents, comparing the direct manufacturing methods of stents’ struts by SLM technology using Ti6Al4V with stent models made from photopolymerizable resins using SLA. Furthermore, computer-aided engineering (CAE) simulations for two different stent struts were carried out, providing insights into the potential of using these materials and methods for realizing the production of stents.

Originality/value

This study covers advancements in materials and additive manufacturing methods but also approaches the use of CAE analysis, introducing in this way novel elements to the domain of customized stent manufacturing. The emerging applications of these resins, along with metallic alloys and 3D printing technologies, have brought significant contributions to the biomedical domain, as emphasized in this study. This study concludes by highlighting the current challenges and future research directions in the use of photopolymerizable resins and biocompatible metallic alloys, while also emphasizing the integration of artificial intelligence in the design process of customized stents by taking into consideration the 3D printing technologies that are used for producing these stents.

Article
Publication date: 17 April 2024

Vidyut Raghu Viswanath, Shivashankar Hiremath and Dundesh S. Chiniwar

The purpose of this study, most recent advancements in threedimensional (3D) printing have focused on the fabrication of components. It is typical to use different print settings…

20

Abstract

Purpose

The purpose of this study, most recent advancements in threedimensional (3D) printing have focused on the fabrication of components. It is typical to use different print settings, such as raster angle, infill and orientation to improve the 3D component qualities while fabricating the sample using a 3D printer. However, the influence of these factors on the characteristics of the 3D parts has not been well explored. Owing to the effect of the different print parameters in fused deposition modeling (FDM) technology, it is necessary to evaluate the strength of the parts manufactured using 3D printing technology.

Design/methodology/approach

In this study, the effect of three print parameters − raster angle, build orientation and infill − on the tensile characteristics of 3D-printed components made of three distinct materials − acrylonitrile styrene acrylate (ASA), polycarbonate ABS (PC-ABS) and ULTEM-9085 − was investigated. A variety of test items were created using a commercially accessible 3D printer in various configurations, including raster angle (0°, 45°), (0°, 90°), (45°, −45°), (45°, 90°), infill density (solid, sparse, sparse double dense) and orientation (flat, on-edge).

Findings

The outcome shows that variations in tensile strength and force are brought on by the effects of various printing conditions. In all possible combinations of the print settings, ULTEM 9085 material has a higher tensile strength than ASA and PC-ABS materials. ULTEM 9085 material’s on-edge orientation, sparse infill, and raster angle of (0°, −45°) resulted in the greatest overall tensile strength of 73.72 MPa. The highest load-bearing strength of ULTEM material was attained with the same procedure, measuring at 2,932 N. The tensile strength of the materials is higher in the on-edge orientation than in the flat orientation. The tensile strength of all three materials is highest for solid infill with a flat orientation and a raster angle of (45°, −45°). All three materials show higher tensile strength with a raster angle of (45°, −45°) compared to other angles. The sparse double-dense material promotes stronger tensile properties than sparse infill. Thus, the strength of additive components is influenced by the combination of selected print parameters. As a result, these factors interact with one another to produce a high-quality product.

Originality/value

The outcomes of this study can serve as a reference point for researchers, manufacturers and users of 3D-printed polymer material (PC-ABS, ASA, ULTEM 9085) components seeking to optimize FDM printing parameters for tensile strength and/or identify materials suitable for intended tensile characteristics.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 21 December 2023

Manikandaraja G., Pandiyarajan R., Vasanthanathan A. and Sabarish S.

This study aims to evaluate the development of composites made of epoxy (E) resin with different weight percentages of polypropylene (PP) and graphene oxide (Go) to form…

Abstract

Purpose

This study aims to evaluate the development of composites made of epoxy (E) resin with different weight percentages of polypropylene (PP) and graphene oxide (Go) to form nanocomposite plates.

Design/methodology/approach

A hand lay-up process was used to develop 21 different composites, with varying concentrations of PP (5%–35%) and Go (5%–35%). A ternary composite of E matrix was produced by combining binary fillers PP and Go (5%–35%) in a 1:1 ratio to a (95%–5%) solution. With the help of adopting the melt condensation deal to extract Go, the modified Hummers method was used to make Go platelets.

Findings

Through field emission scanning electron microscopy (FESEM) and X-ray diffraction investigations, the particulate’s size and structural characteristics were identified. Based on the FESEM analysis of the collapsed zones of the composites, a warp-and-weft-like structure is evident, which endorses the growth yield strength, flexural modulus and impact strength of the composites.

Originality/value

The developed nanocomposites have exceptional mechanical capabilities compared to plain E resin, with E resin exhibiting better tensile strength, modulus and flexural strength when combined with 10% PP and 10% Go. When compared to neat E resin, materials formed from composites have exceptional mechanical properties. When mixed with 10% PP and 10% Go, E resin in particular displays improved tensile strength (23 MPa), tensile modulus (4.15 GPa), flexural strength (75.6 MPa) and other attributes. Engineering implications include automobile side door panels, spacecraft applications, brake pads and flexible battery guards.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 30 January 2024

Burçak Zehir, Mirsadegh Seyedzavvar and Cem Boğa

This study aims to comprehensively investigate the mixed-mode fracture behavior and mechanical properties of selective laser sintering (SLS) polyamide 12 (PA12) components…

Abstract

Purpose

This study aims to comprehensively investigate the mixed-mode fracture behavior and mechanical properties of selective laser sintering (SLS) polyamide 12 (PA12) components, considering different build orientations and layer thicknesses. The primary objectives include the following. Conducting mixed-mode fracture and mechanical analyses on SLS PA12 parts. Investigating the influence of build orientation and layer thickness on the mechanical properties of SLS-printed components. Examining the fracture mechanisms of SLS-produced Arcan fracture and tensile specimens through experimental methods and finite element analyses.

Design/methodology/approach

The research used a combination of experimental techniques and numerical analyses. Tensile and Arcan fracture specimens were fabricated using the SLS process with varying build orientations (X, X–Y, Z) and layer thicknesses (0.1 mm, 0.2 mm). Mechanical properties, including tensile strength, modulus of elasticity and critical stress intensity factor, were quantified through experimental testing. Mixed-mode fracture tests were conducted using a specialized fixture, and finite element analyses using the J-integral method were performed to calculate fracture toughness. Scanning electron microscopy (SEM) was used for detailed morphological analysis of fractured surfaces.

Findings

The investigation revealed that the highest tensile properties were achieved in samples fabricated horizontally in the X orientation with a layer thickness of 0.1 mm. Additionally, parts manufactured with a layer thickness of 0.2 mm exhibited favorable mixed-mode fracture behavior. The results emphasize the significance of build orientation and layer thickness in influencing mechanical properties and fracture behavior. SEM analysis provided valuable insights into the failure mechanisms of SLS-produced PA12 components.

Originality/value

This study contributes to the field of additive manufacturing by providing a comprehensive analysis of the mixed-mode fracture behavior and mechanical properties of SLS-produced PA12 components. The investigation offers novel insights into the influence of build orientation and layer thickness on the performance of such components. The combination of experimental testing, numerical analyses and SEM morphological observations enhances the understanding of fracture behavior in additive manufacturing processes. The findings contribute to optimizing the design and manufacturing of high-quality PA12 components using SLS technology.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 March 2024

Lifeng Wang, Fei Yu, Ziwang Xiao and Qi Wang

When the reinforced concrete beams are reinforced by bonding steel plates to the bottom, excessive use of steel plates will make the reinforced concrete beams become…

Abstract

Purpose

When the reinforced concrete beams are reinforced by bonding steel plates to the bottom, excessive use of steel plates will make the reinforced concrete beams become super-reinforced beams, and there are security risks in the actual use of super-reinforced beams. In order to avoid the occurrence of this situation, the purpose of this paper is to study the calculation method of the maximum number of bonded steel plates to reinforce reinforced concrete beams.

Design/methodology/approach

First of all, when establishing the limit failure state of the reinforced member, this paper comprehensively considers the role of the tensile steel bar and steel plate and takes the load effect before reinforcement as the negative contribution of the maximum number of bonded steel plates that can be used for reinforcement. Through the definition of the equivalent tensile strength, equivalent elastic modulus and equivalent yield strain of the tensile steel bar and steel plate, a method to determine the relative limit compression zone height of the reinforced member is obtained. Second, based on the maximum ratio of (reinforcement + steel plate), the relative limit compression zone height and the equivalent tensile strength of the tensile steel bar and steel plate of the reinforced member, the calculation method of the maximum number of bonded steel plates is derived. Then, the static load test of the test beam is carried out and the corresponding numerical model is established, and the reliability of the numerical model is verified by comparison. Finally, the accuracy of the calculation method of the maximum number of bonded steel plates is proved by the numerical model.

Findings

The numerical simulation results show that when the steel plate width is 800 mm and the thickness is 1–4 mm, the reinforced concrete beam has a delayed yield platform when it reaches the limit state, and the failure mode conforms to the basic stress characteristics of the balanced-reinforced beam. When the steel plate thickness is 5–8 mm, the sudden failure occurs without obvious warning when the reinforced concrete beam reaches the limit state. The failure mode conforms to the basic mechanical characteristics of the super-reinforced beam failure, and the bending moment of the beam failure depends only on the compressive strength of the concrete. The results of the calculation and analysis show that the maximum number of bonded steel plates for reinforced concrete beams in this experiment is 3,487 mm2. When the width of the steel plate is 800 mm, the maximum thickness of the steel plate can be 4.36 mm. That is, when the thickness of the steel plate, the reinforced concrete beam is still the balanced-reinforced beam. When the thickness of the steel plate, the reinforced concrete beam will become a super-reinforced beam after reinforcement. The calculation results are in good agreement with the numerical simulation results, which proves the accuracy of the calculation method.

Originality/value

This paper presents a method for calculating the maximum number of steel plates attached to the bottom of reinforced concrete beams. First, based on the experimental research, the failure mode of reinforced concrete beams with different number of steel plates is simulated by the numerical model, and then the result of the calculation method is compared with the result of the numerical simulation to ensure the accuracy of the calculation method of the maximum number of bonded steel plates. And the study does not require a large number of experimental samples, which has a certain economy. The research result can be used to control the number of steel plates in similar reinforcement designs.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 218