Search results

1 – 10 of 294
Article
Publication date: 1 May 2001

S.Z. Shuja and B.S. Yilbas

A laminar swirling jet impinging on to an adiabatic solid wall is investigated. The flow field is computed and entropy analysis is carried out for different flow configurations…

Abstract

A laminar swirling jet impinging on to an adiabatic solid wall is investigated. The flow field is computed and entropy analysis is carried out for different flow configurations. The numerical scheme employing a control volume approach is introduced when solving the governing equations of flow and energy. In order to examine the effect of the nozzle exit velocity profile and the swirling velocity on the flow field and entropy generation rate, six nozzle exit velocity profiles and four swirl velocities are considered. It is found that the influence of swirl velocity on the flow field is more pronounced as the velocity profile number reduces. In this case, two circulation cells are generated in the flow field. The total entropy generation increases with increasing swirl velocity for low velocity profile numbers. The Merit number improves for low swirling velocity and high velocity profile numbers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 11 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 November 2002

S.Z. Shuja, B.S. Yilbas and M.O. Budair

A confined laminar swirling jet is an interesting research topic due to flow and temperature fields generated in and across the jet. In the present study, a confined laminar…

Abstract

A confined laminar swirling jet is an interesting research topic due to flow and temperature fields generated in and across the jet. In the present study, a confined laminar swirling jet is studied, and flow and temperature fields are simulated numerically using a control volume approach. In order to investigate the influence of the jet exiting (exiting the nozzle and inleting to the control volume) velocity profiles on the flow and heat transfer characteristics, eight different velocity profiles are considered. To identify each velocity profile, a velocity profile number is introduced. Entropy analysis is carried out to determine the total entropy generation due to heat transfer and fluid friction. Merit number is computed for various swirling velocities and velocity profiles. It is found that swirling motion expands the jet in the radial direction and reduces the jet length in the axial direction. This, in turn, reduces the entropy generation rate and improves the Merit number. Increasing velocity profile number enhances the entropy production rate, but improves the Merit number.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 12 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 December 2019

Francisco-Javier Granados-Ortiz, Joaquin Ortega-Casanova and Choi-Hong Lai

Impinging jets have been widely studied, and the addition of swirl has been found to be beneficial to heat transfer. As there is no literature on Reynolds-averaged Navier Stokes…

Abstract

Purpose

Impinging jets have been widely studied, and the addition of swirl has been found to be beneficial to heat transfer. As there is no literature on Reynolds-averaged Navier Stokes equations (RANS) nor experimental data of swirling jet flows generated by a rotating pipe, the purpose of this study is to fill such gap by providing results on the performance of this type of design.

Design/methodology/approach

As the flow has a different behaviour at different parts of the design, the same turbulent model cannot be used for the full domain. To overcome this complexity, the simulation is split into two coupled stages. This is an alternative to use the costly Reynold stress model (RSM) for the rotating pipe simulation and the SST k-ω model for the impingement.

Findings

The addition of swirl by means of a rotating pipe with a swirl intensity ranging from 0 up to 0.5 affects the velocity profiles, but has no remarkable effect on the spreading angle. The heat transfer is increased with respect to a non-swirling flow only at short nozzle-to-plate distances H/D < 6, where H is the distance and D is the diameter of the pipe. For the impinging zone, the highest average heat transfer is achieved at H/D = 5 with swirl intensity S = 0.5. This is the highest swirl studied in this work.

Research limitations/implications

High-fidelity simulations or experimental analysis may provide reliable data for higher swirl intensities, which are not covered in this work.

Practical implications

This two-step approach and the data provided is of interest to other related investigations (e.g. using arrays of jets or other surfaces than flat plates).

Originality/value

This paper is the first of its kind RANS simulation of the heat transfer from a flat plate to a swirling impinging jet flow issuing from a rotating pipe. An extensive study of these computational fluid dynamics (CFD) simulations has been carried out with the emphasis of splitting the large domain into two parts to facilitate the use of different turbulent models and periodic boundary conditions for the flow confined in the pipe.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 January 1986

J.I. Ramos

A mathematical model has been developed to study incompressible, isothermal, turbulent, confined, swirling flows. The model solves the conservation equations of mass, momentum…

Abstract

A mathematical model has been developed to study incompressible, isothermal, turbulent, confined, swirling flows. The model solves the conservation equations of mass, momentum, and two additional equations for the turbulent kinetic energy and the rate of dissipation of turbulent kinetic energy. The numerical predictions show a recirculation zone in the form of a one‐celled toroidal vortex at the combustor centreline. High levels of turbulence characterize the recirculation zone. The length, diameter and maximum velocity of the recirculation zone first decrease and then increase as the magnitude of the outer swirl number is first decreased from counter‐swirl to zero and then increased to co‐swirl flow conditions. Counter‐swirl produces steeper velocity gradients at the inter‐jet shear layer and promotes faster mixing than co‐swirl. The numerical results also indicate that the mass of the recirculation zone first decreases and then increases as the outer swirl number is first decreased from counter‐swirl to zero and then increased to co‐swirl conditions. The diameter, maximum velocity and mass of the recirculation zone are monotonically increasing functions of the inner jet swirl number. The recirculation zone length, diameter and mass are almost independent of the Reynolds number and outer‐to‐inner jet axial velocity ratio.

Details

Engineering Computations, vol. 3 no. 1
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 1 February 1984

J.I. Ramos

A mathematical model has been developed to study turbulent, confined, swirling flows under reacting non‐premixed conditions. The model solves the conservation equations of mass…

Abstract

A mathematical model has been developed to study turbulent, confined, swirling flows under reacting non‐premixed conditions. The model solves the conservation equations of mass, momentum, energy, species, and two additional equations for the turbulent kinetic energy and the turbulent length scale. Combustion has been modelled by means of a one‐step overall chemical reaction. The numerical predictions based on the eddy‐break‐up model of turbulent combustion show a recirculation zone in the form of a one‐celled toroidal vortex at the combustor centreline. High levels of turbulence characterize the recirculation zone, whose diameter and velocity first decrease and then increase as the magnitude of the outer swirl number is first decreased from counter‐swirl to zero and then increased to co‐swirl flow conditions. Counter‐swirl produces steeper velocity gradients at the inter‐jet shear layer, promotes faster mixing and yields better combustion efficiency than co‐swirl. The numerical results are compared with those obtained under non‐reacting conditions in order to assess the influence of the heat release on the size of the recirculation zone.

Details

Engineering Computations, vol. 1 no. 2
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 1 March 1994

R. Gopinath and V. Ganesan

An orthogonal array technique is used in the present work toinvestigate, numerically, the effects of the swirler and the primary jets onthe characteristics of the recirculation…

Abstract

An orthogonal array technique is used in the present work to investigate, numerically, the effects of the swirler and the primary jets on the characteristics of the recirculation zone of a can‐type gas turbine combustor. The computer code used for this purpose is first validated with the available experimental data. The effects of change in the percentage flow rate through the swirler, the swirl number, the hub diameter of the swirler and the diameter of the primary injection holes (which influences the velocity of the jets) are estimated first. It is found that the flow rate through the swirler and the size of the primary injection hole have much more influence on the characteristics of the recirculation zone than the swirl number and the hub diameter of the swirler. But the earlier studies show that for a given flow rate through the swirler, the swirl number and swirler geometry have considerable influence on the characteristics of the recirculation zone in the absence of primary jets. Therefore it is inferred that there may be a critical point, based on the ratio of flow rate through the swirler to that of primary holes, beyond which the effects of swirl number and the swirler geometry dominate the effect of primary jets in determining the characteristics of the recirculation zone. This critical point is determined by gradually reducing the flow through the primary holes. It is found that, initially, the recirculation ratio (ratio of the mass of fluid recirculated to that sum of the mass flow rate through the swirler and through that of primary hole) reduces because of weakening of the primary jets but after the critical point it increases because of the swirler effect taking over the role of providing the recirculation. It is also observerd that the length of the recirculation zone increases as the strength of the primary jets reduces.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 4 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 September 1998

Asuquo B. Ebiana

A computational procedure based on a hybrid Lagrangian‐Eulerian discrete‐vortical element formulation and conformal transformation schemes are employed in this study to simulate…

Abstract

A computational procedure based on a hybrid Lagrangian‐Eulerian discrete‐vortical element formulation and conformal transformation schemes are employed in this study to simulate the interaction of an air jet with swirling air flow inside a two‐dimensional cylinder. Such an investigation is of importance to many flow‐related industrial and environmental problems, such as mixing, cooling, combustion and dispersion of air‐borne or water‐borne contaminants because of the role of vortices in the global transport of matter and heat. The basis for the simulation is discussed and numerical results compared with theoretical results for the velocity field and streamfunction obtained by the method of images. The swirling air motion and the features of a real jet are well simulated and numerical results are validated by predictions of theory to within 20 per cent. To illustrate the merging and interaction processes of vortices and the formation of large eddies, velocity vectors, particle trajectories and streamline contours are presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 8 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 May 2015

Teresa Parra-Santos, J.R. Pérez-Domínguez, R.Z. Szasz and F. Castro-Ruiz

One current trend in burner technology is to obtain high efficiency while keeping low levels of NOx emissions. A swirling flow in combustion ensures a fixed position of a compact…

Abstract

Purpose

One current trend in burner technology is to obtain high efficiency while keeping low levels of NOx emissions. A swirling flow in combustion ensures a fixed position of a compact flame. Therefore, it is necessary to design efficient swirlers. Flow patterns are simulated for the different swirl devices proposed in this work. Two axial-swirlers are studied: one based on curve-vanes consisting of a straight line with an arc of a circle as the trailing edge and the other is the common flat-vanes. The purpose of this paper is to assess the accuracy of different swirl generators using a well-known benchmark test case.

Design/methodology/approach

This work deals with modelling the swirler using two approaches: the general purpose Computational fluid dynamics (CFD) solver Ansys-Fluent® and the suite of libraries OpenFOAM® to solve the Reynolds Averaged Navier Stokes equations, showing there is a slight deviation between both approaches. Their performance involves analyzing not only the Swirl number but also the size of the recirculation zones in the test chamber. A subsequent process on the flow patterns was carried out to establish the intensity of segregation which provides insight into the quality of mixing.

Findings

CFD models are feasible tools to predict flow features. It was found that numerical results tend to reduce the inner recirculation zone (IRZ) radial size. Further, an increase of the swirl number involves larger IRZ and a smaller outer recirculation zone (ORZ). The curved swirler displays a better axi-symmetric behaviour than flat vanes. There is weak influence of the chord vanes on the swirl number. The number of vanes is a compromise of head loses and guidance of the flow.

Originality/value

The paper offers two different approaches to solve turbulent swirling flows. One based in a general contrasted commercial tool and other using open source code. Both models show similar performance. An innovative set up for an axial swirler different from the conventional flat vanes was proposed.

Details

Engineering Computations, vol. 32 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 July 1995

J.H. Tsai, C.A. LIN and C.M. LU

Numerical simulations were applied to suddenly‐expanding‐pipe flows,with and without swirl at the inlet, using an eddy‐viscosity type k‐ε modeland Reynolds stress transport model…

Abstract

Numerical simulations were applied to suddenly‐expanding‐pipe flows, with and without swirl at the inlet, using an eddy‐viscosity type k‐ε model and Reynolds stress transport model variants. The predicted mean and turbulence results were compared with measurements. For the non‐swirling case, the flowfield was well represented by all the models, though the k‐ε predictions showed a slightly higher level of radial diffusive transport across the shear layer in the recirculation zone. As for the weakly swirling case, while all models, especially the stress models, give accurate values of the mean flow and turbulence fields in regions remote from the central vortex core; the biggest discrepancies between predictions and measurements occurred along the centreline in which all the models failed to reproduce correctly the strength of the decay of swirl‐induced deceleration of the axial velocity. The intensity of the turbulence along the centreline was also severely underpredicted by all the models and this contributed to the misrepresentations of the shear stresses and, hence, the mean flow development predicted by the stress models.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 5 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 November 2020

S. Madhu and M. Balasubramanian

The purpose of this study is for solving many issues in production that includes processing of complex-shaped profile, machining of high-strength materials, good surface finish…

Abstract

Purpose

The purpose of this study is for solving many issues in production that includes processing of complex-shaped profile, machining of high-strength materials, good surface finish with high-level precision and minimization of waste. Among the various advanced machining processes, abrasive jet machining (AJM) is one of the non-traditional machining techniques used for various applications such as polishing, deburring and hole making. Hence, an overview of the investigations done on carbon fiber-reinforced polymer (CFRP) and glass fiber-reinforced polymer (GRFP) composites becomes important.

Design/methodology/approach

Discussion on various approaches to AJM, the effect of process parameters on the glass fiber and carbon fiber polymeric composites are presented. Kerf characteristics, surface roughness and various nozzle design were also discussed.

Findings

It was observed that abrasive jet pressure, stand-off distance, traverse rate, abrasive size, nozzle diameter, angle of attack are the significant process parameters which affect the machining time, material removal rate, top kerf, bottom kerf and kerf angle. When the particle size is maximum, the increased kinetic energy of the particle improves the penetration depth on the CFRP surface. As the abrasive jet pressure is increased, the cutting process is enabled without severe jet deflection which in turn minimizes the waviness pattern, resulting in a decrease of the surface roughness.

Research limitations/implications

The review is limited to glass fiber and carbon fiber polymeric composites.

Practical implications

In many applications, the use of composite has gained wide acceptance. Hence, machining of the composite need for the study also has gained wide acceptance.

Social implications

The usage of composites reduces the usage of very costly materials of high density. The cost of the material also comes down.

Originality/value

This paper is a comprehensive review of machining composite with abrasive jet. The paper covers in detail about machining of only GFRP and CFRP composites with various nozzle designs, unlike many studies which has focused widely on general AJM of various materials.

Details

World Journal of Engineering, vol. 18 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 294