Search results

1 – 10 of over 5000
Article
Publication date: 12 April 2013

A. Postelnicu and I. Pop

The purpose of this paper is to investigate the steady flow of a non‐Newtonian power‐law type fluid over a permeable stretching surface. The surface is stretched with a prescribed…

Abstract

Purpose

The purpose of this paper is to investigate the steady flow of a non‐Newtonian power‐law type fluid over a permeable stretching surface. The surface is stretched with a prescribed skin velocity following a power‐law variation along its length.

Design/methodology/approach

Using appropriate similarity variables and boundary layer approximations, the continuity and momentum equations are reduced to an ordinary differential equation subject to appropriate transformed boundary conditions, with three dimensionless parameters: the power‐law index of the non‐Newtonian fluid, suction/injection parameter and the power law index of the skin velocity. These equations are solved numerically by using the fourth‐order Runge‐Kutta integration algorithm coupled with a conventional shooting procedure. Comparisons with closed form analytical solutions obtained for the case of Newtonian fluid by previous authors are also performed.

Findings

It was found that the dimensionless entrainment velocity decreases with the power exponent m, of the prescribed skin velocity, irrespective of the non‐Newtonian fluid nature, for both impermeable and permeable surfaces. Large rates of injection lead to very large values of the skin friction, the effect being more intense for small values of the dimensionless flow index n. At the same rate of the injection/suction, the skin friction S is increased when the surface is stretched linearly than uniformly.

Practical implications

This type of problem has potential to serve as a prototype for many manufacturing processes such as rolling sheet drawn from a die, cooling and/or drying of paper and textile, manufacturing of polymeric sheets, sheet glass and crystalline materials, etc.

Originality/value

A thorough analysis of the hydrodynamics of a stretching surface is performed in the present paper, by combining analytical and numerical means. The topics covered here (Ostwald‐de Waele power‐law fluid + prescribed skin velocity + permeability of the stretching surface) seem to be not reported till now in the literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 2016

Ioan Pop, Kohi Naganthran and Roslinda Nazar

The purpose of this paper is to analyse numerically the steady stagnation-point flow of a viscous and incompressible fluid over continuously non-aligned stretching or shrinking…

Abstract

Purpose

The purpose of this paper is to analyse numerically the steady stagnation-point flow of a viscous and incompressible fluid over continuously non-aligned stretching or shrinking surface in its own plane in a water-based nanofluid which contains three different types of nanoparticles, namely, Cu, Al2O3 and TiO2.

Design/methodology/approach

Similarity transformation is used to convert the system of boundary layer equations which are in the form of partial differential equations into a system of ordinary differential equations. The system of similarity governing equations is then reduced to a system of first-order differential equations and solved numerically using the bvp4c function in Matlab software.

Findings

Unique solution exists when the surface is stretched and dual solutions exist as the surface shrunk. For the dual solutions, stability analysis has revealed that the first solution (upper branch) is stable and physically realizable, while the second solution (lower branch) is unstable. The effect of non-alignment is huge for the shrinking surface which is in contrast with the stretching surface.

Practical implications

The results obtained can be used to explain the characteristics and applications of nanofluids, which are widely used as coolants, lubricants, heat exchangers and micro-channel heat sinks. This problem also applies to some situations such as materials which are manufactured by extrusion, production of glass-fibre and shrinking balloon. In this kind of circumstance, the rate of cooling and the stretching/shrinking process play an important role in moulding the final product according to preferable features.

Originality/value

The present results are original and new for the study of fluid flow and heat transfer over a stretching/shrinking surface for the problem considered by Wang (2008) in a viscous fluid and extends to nanofluid by using the Tiwari and Das (2007) model.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 March 2020

Muhammad Sohail and Rabeeah Raza

The current determination is committed to characterize the boundary layer flow of Williamson nanofluid prompted by nonlinear strained superficial under heat and mass transport…

Abstract

Purpose

The current determination is committed to characterize the boundary layer flow of Williamson nanofluid prompted by nonlinear strained superficial under heat and mass transport mechanisms. Buongiorno model is presented to view the influence of nanoparticles in fluid flow. Scrutiny has been conceded under the action of the transversely smeared magnetic field. Heat and mass relocation exploration are conducted in the companionship of radiation effects and actinic compensation.

Design/methodology/approach

Similarity variable is designated to transmute nonlinear partial differential equations of conservation laws of mass, momentum, energy and species into ordinary dimensional expressions. These constitutive and complicated ordinary differential expressions assessing the flow situation are handled efficaciously by manipulating Runge–Kutta–Fehlberg procedure (RK-5) with shooting routine.

Findings

The graphical demonstration is deliberated to scrutinize the variation in velocity, temperature and concentration profiles with respect to flow regulating parameters. Numerical data are displayed through tables in order to surmise variation in skin friction coefficient and Nusselt number. The augmenting values of fluid parameter and magnetic parameter reduces the horizontal fluid velocity, whereas normal velocity upsurges for mounting values of stretching ratio parameter. Moreover, mounting values of radiation parameter and thermophoresis parameter upsurges the temperature profile, whereas, growing values of Prandtl number lessen the temperature field.

Practical implications

The current exploration is used in many industrial and engineering applications in order to discuss the transport phenomenon.

Originality/value

Flow over a nonlinear stretched surface has numerous applications in the industry. The present attempt examines the combined influence of various physical characteristics for the flow of Williamson fluid and no such attempt exist in the available literature.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 18 May 2010

P.M. Patil, S. Roy and Ali J. Chamkha

The purpose of this paper is to consider steady two‐dimensional mixed convection flow along a vertical semi‐infinite power‐law stretching sheet. The velocity and temperature of…

Abstract

Purpose

The purpose of this paper is to consider steady two‐dimensional mixed convection flow along a vertical semi‐infinite power‐law stretching sheet. The velocity and temperature of the sheet are assumed to vary in a power‐law form.

Design/methodology/approach

The problem is formulated in terms of non‐similar equations. These equations are solved numerically by an efficient implicit, iterative, finite‐difference method in combination with a quasi‐linearization technique.

Findings

It was found that the skin‐friction coefficient increased with the ratio of free‐stream velocity to the composite reference velocity and the buoyancy parameter while it decreased with exponent parameter. The heat transfer rate increased with the Prandtl number, buoyancy parameter and the exponent parameter.

Practical implications

A very useful source of information for researchers on the subject of convective flow over stretching sheets.

Originality/value

This paper illustrates mixed convective flow over a power‐law stretched surface with variable wall temperature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 20 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 May 2020

Iskandar Waini, Anuar Ishak and Ioan Pop

This paper aims to examine the hybrid nanofluid flow towards a stagnation point on an exponentially stretching/shrinking vertical sheet with buoyancy effects.

Abstract

Purpose

This paper aims to examine the hybrid nanofluid flow towards a stagnation point on an exponentially stretching/shrinking vertical sheet with buoyancy effects.

Design/methodology/approach

Here, the authors consider copper (Cu) and alumina (Al2O3) as hybrid nanoparticles while water as the base fluid. The governing equations are reduced to the similarity equations using similarity transformations. The resulting equations are programmed in Matlab software through the bvp4c solver to obtain their solutions.

Findings

The authors found that the heat transfer rate is greater for Al2O3-Cu/water hybrid nanofluid if compared to Cu/water nanofluid. Besides, the non-uniqueness of the solutions is observed for certain physical parameters. The authors also notice that the bifurcation of the solutions occurs in the downward buoyant force and the shrinking regions. In addition, the first solution of the skin friction and heat transfer coefficients increase with the added hybrid nanoparticles and the mixed convection parameter. The temporal stability analysis shows that one of the solutions is stable as time evolves.

Originality/value

The present work is dealing with the problem of a mixed convection flow of a hybrid nanofluid towards a stagnation point on an exponentially stretching/shrinking vertical sheet, with the buoyancy effects is taken into consideration. The authors show that two solutions are obtained for a single value of parameter for both stretching and shrinking cases, as well as for both buoyancy aiding and opposing flows. A temporal stability analysis then shows that only one of the solutions is stable and physically reliable as time evolves.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 November 2017

Natalia C. Roşca and Ioan Pop

The purpose of this study is to analyze numerically the steady axisymmetric rotational stagnation point flow impinging on a radially permeable stretching/shrinking sheet in a…

Abstract

Purpose

The purpose of this study is to analyze numerically the steady axisymmetric rotational stagnation point flow impinging on a radially permeable stretching/shrinking sheet in a nanofluid.

Design/methodology/approach

Similarity transformation is used to convert the system of partial differential equations into a system of ordinary (similarity) differential equations. This system is then reduced to a system of first-order differential equations and solved numerically using the bvp4c function in MATLAB software.

Findings

Dual solutions exist when the surface is stretched, as well as when the surface is shrunk. For these solutions, a stability analysis is carried out revealing that the first solution (upper branch) is stable and physically realizable, while the second solution (lower branch) is unstable and therefore not physically realizable.

Originality/value

The present results are original and new for the study of fluid flow and heat transfer over a stretching/shrinking surface, as they successfully extend the problem considered by Weidman (2016) to the case of nanofluids.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 June 2021

Sanatan Das, Akram Ali and Rabindra Nath Jana

Outstanding features such as thermal conductivity and superior electrical conductivity of nanofluids unfold a new window in the context of their extensive applications in…

Abstract

Purpose

Outstanding features such as thermal conductivity and superior electrical conductivity of nanofluids unfold a new window in the context of their extensive applications in engineering and industrial domains. The purpose of this study to simulate numerically the magneto-nanofluid flow and heat transfer over a curved stretching surface. Heat transport is explored in the presence of viscous dissipation. At the curved surface, the convective boundary condition is adopted. Three different nanoparticles, namely, copper, aluminium oxide and titanium dioxide are taken into consideration because of easily available in nature.

Design/methodology/approach

The basic flow equations are framed in terms of curvilinear coordinates. The modelled partial differential equations are transformed into a system of non-linear ordinary differential equations by means of appropriate similarity transformation. The subsequent non-linear system of equations is then solved numerically by using the Runge–Kutta–Felhberg method with the shooting scheme via bvp4c MATLAB built-in function. Impacts of various physical parameters on velocity, pressure and temperature distributions, local skin-friction coefficient, local Nusselt number and wall temperature are portrayed through graphs and tables followed by a comprehensive debate and physical interpretation.

Findings

Graphical results divulge that augmenting values of the magnetic parameter cause a decline in velocity profiles and stream function inside the boundary layer. The magnitude of the pressure function inside the boundary layer reduces for higher estimation of curvature parameter, and it is also zero when the curvature parameter goes to infinity. Furthermore, the temperature is observed in a rising trend with growing values of the magnetic parameter and Biot number.

Practical implications

This research study is very pertinent to the expulsion of polymer sheet and photographic films, metallurgical industry, electrically-conducting polymer dynamics, magnetic material processing, rubber and polymer sheet processing, continuous casting of metals, fibre spinning, glass blowing and fibre, wire and fibre covering and sustenance stuff preparing, etc.

Originality/value

Despite the huge amount of literature available, but still, very little attention is given to simulate the flow configuration due to the curved stretching surface with the convective boundary condition. Very few papers have been examined on this topic and found that its essence inside the boundary layer is not any more insignificant than on account of a stretching sheet. A numerical comparison with the published works is conducted to verify the accuracy of the present study.

Details

World Journal of Engineering, vol. 18 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 6 October 2023

MD. Shamshuddin, Anwar Saeed, S.R. Mishra, Ramesh Katta and Mohamed R. Eid

Whilst a modest number of investigations have been undertaken concerning nanofluids (NFs), the exploration of fluid flow under exponentially stretching velocities using NFs…

Abstract

Purpose

Whilst a modest number of investigations have been undertaken concerning nanofluids (NFs), the exploration of fluid flow under exponentially stretching velocities using NFs remains comparatively uncharted territory. This work presents a distinctive contribution through the comprehensive examination of heat and mass transfer phenomena in the NF ND–Cu/H2O under the influence of an exponentially stretching velocity. Moreover, the investigation delves into the intriguing interplay of gyrotactic microorganisms and convective boundary conditions within the system.

Design/methodology/approach

Similarity transformations have been used on PDEs to convert them into dimensionless ODEs. The solution is derived by using the homotopy analysis method (HAM). The pictorial notations have been prepared for sundry flow parameters. Furthermore, some engineering quantities are calculated in terms of the density of motile microbes, Nusselt and Sherwood numbers and skin friction, which are presented in tabular form.

Findings

The mixed convection effect associated with the combined effect of the buoyancy ratio, bioconvection Rayleigh constant and the resistivity due to the magnetization property gives rise to attenuating the velocity distribution significantly in the case of hybrid nanoliquid. The parameters involved in the profile of motile microorganisms attenuate the profile significantly.

Practical implications

The current simulations have uncovered fascinating discoveries about how metallic NFs behave near a stretched surface. These insights give us valuable information about the characteristics of the boundary layer close to the surface under exponential stretching.

Originality/value

The novelty of the current investigation is the analysis of NF ND–Cu/H2O along with an exponentially stretching velocity in a system with gyrotactic microorganisms. The investigation of fluid flow at an exponentially stretching velocity using NFs is still relatively unexplored.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 November 2019

Muhammad Sohail and Sana Tariq

Thermal and species transport of magneto hydrodynamic Casson liquid over a stretched surface is investigated theoretically in this examination for the three-dimensional boundary…

Abstract

Purpose

Thermal and species transport of magneto hydrodynamic Casson liquid over a stretched surface is investigated theoretically in this examination for the three-dimensional boundary layer flow of a yield exhibiting material. The phenomenon of heat and species relocation is based upon modified Fourier and Fick’s laws that involves the relaxation times for the transportation of heat and mass. Conservation laws are modeled under boundary layer analysis in the Cartesian coordinates system. The purpose of this paper is to find the influence of different emerging parameters on fluid velocity, temperature and transport of species.

Design/methodology/approach

Reconstructed nonlinear boundary layer ordinary differential equations are analyzed through eigenvalues and eigenvectors. Due to the complexity and non-existence of the exact solution of the transformed equations, a convergent series solution by the homotopy algorithm is also derived. The reliability of the applied scheme is presented by comparing the obtained results with the previous findings.

Findings

Physical quantities of interest are displayed through graphs and tables and discussed for sundry variables. It is discerned that higher magnetic influence slows down fluid motion, whereas concentration and temperature profiles upsurge. Reliability of the recommended scheme is monitored by comparing the obtained results for the dimensionless stress as a limiting case of previous findings and an excellent agreement is observed. Higher values of Schmidt number reduce the concentration profile, whereas mounting the values of Prandtl number reduces the dimensionless temperature field. Moreover, heat and species transfer rates increase by mounting the values of thermal and concentration relaxation times.

Originality/value

The phenomenon of heat and species relocation is based upon modified Fourier and Fick’s laws which involves the relaxation times for the transportation of heat and mass. Conservation laws are modeled under boundary layer analysis in the Cartesian coordinates system.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Open Access
Article
Publication date: 2 August 2019

Mair Khan, T. Salahuddin, Muhammad Malik Yousaf, Farzana Khan and Arif Hussain

The purpose of the current flow configurations is to bring to attention the thermophysical aspects of magnetohydrodynamics (MHD) Williamson nanofluid flow under the effects of…

1428

Abstract

Purpose

The purpose of the current flow configurations is to bring to attention the thermophysical aspects of magnetohydrodynamics (MHD) Williamson nanofluid flow under the effects of Joule heating, nonlinear thermal radiation, variable thermal coefficient and activation energy past a rotating stretchable surface.

Design/methodology/approach

A mathematical model is examined to study the heat and mass transport analysis of steady MHD Williamson fluid flow past a rotating stretchable surface. Impact of activation energy with newly introduced variable diffusion coefficient at the mass equation is considered. The transport phenomenon is modeled by using highly nonlinear PDEs which are then reduced into dimensionless form by using similarity transformation. The resulting equations are then solved with the aid of fifth-order Fehlberg method.

Findings

The rotating fluid, heat and mass transport effects are analyzed for different values of parameters on velocity, energy and diffusion distributions. Parameters like the rotation parameter, Hartmann number and Weissenberg number control the flow field. In addition, the solar radiation, Joule heating, Prandtl number, thermal conductivity, concentration diffusion coefficient and activation energy control the temperature and concentration profiles inside the stretching surface. It can be analyzed that for higher values of thermal conductivity, Eckret number and solar radiation parameter the temperature profile increases, whereas opposite behavior is noticed for Prandtl number. Moreover, for increasing values of temperature difference parameter and thermal diffusion coefficient, the concentration profile shows reducing behavior.

Originality/value

This paper is useful for researchers working in mathematical and theoretical physics. Moreover, numerical results are very useful in industry and daily-use processes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 5000