Search results

1 – 10 of 54
Article
Publication date: 13 November 2018

Hafida Kahoul, Samira Belhour, Ahmed Bellaouar and Jean Paul Dron

This paper aims to present the fatigue life behaviour of upper arm suspension. The main objectives are to predict the fatigue life of the component and to identify the critical…

Abstract

Purpose

This paper aims to present the fatigue life behaviour of upper arm suspension. The main objectives are to predict the fatigue life of the component and to identify the critical location. In this analysis, three aluminium alloys were used for the suspension, and their fatigue life was compared to select the suitable material for the suspension arm.

Design/methodology/approach

CAD model was prepared using Solid Works software, and finite element analysis was done using ANSYS 14.0 software by importing the Parasolid file to ANSYS. The model is subjected to loading and boundary conditions; the authors consider a vertical force with constant amplitude applied at the bushing that connected to the tire, the others two bushing that connected to the body of the car are constraint. Tetrahedral elements given enhanced results as compared to other types of elements; therefore, the elements (TET 10) are used. The maximum principal stress was considered in the linear static analysis, and fatigue analysis was done using strain life approach.

Findings

Life and damage are evaluated and the critical location was considered at node 63,754. From the fatigue analysis, aluminium alloys 7175-T73 (Al 90%-Zn 5.6%-Mg 2.5% -… …) and 2014-T6 (Al 93.5%-Cu 4.4%-Mg 0.5%… …) present a similar behaviour as compared to 6061-T6 (Al 97.9%-Mg 1.0%-Si 0.6%… … .); in this case of study, these lather are considered to be the materials of choice to manufacture the suspension arms; but 7175-T73 aluminium alloys remain the material with a better resistance to fatigue.

Originality/value

By the finite element analysis method and assistance of ANSYS software, it is able to analyse the different car components from varied aspects such as fatigue, and consequently save time and cost. For further research, the experimental works under controlled laboratory conditions should be done to determine the validation of the result from the software analysis.

Details

Journal of Engineering, Design and Technology, vol. 17 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 16 November 2012

R.A. Cláudio, J.M. Silva and J. Byrne

This paper aims to present a methodology, based on traditional approaches, to predict the fatigue life and non‐propagating cracks of shot peened components and the damaging effect…

Abstract

Purpose

This paper aims to present a methodology, based on traditional approaches, to predict the fatigue life and non‐propagating cracks of shot peened components and the damaging effect of a scratch created over the treated surface.

Design/methodology/approach

The finite element method is used to determine the actual strain at surface and fracture mechanics parameters calculated from cracks at the surface. The model considers residual stress (in order to introduce the effect of shot peening) and the scratch geometry. The total fatigue life is obtained by adding initiation life, to early and long crack propagation life using appropriate criteria.

Findings

Numerical predictions were compared with previous experimental tests, showing that this method is quite reliable for predicting both fatigue life and non‐propagating cracks of shot peened components, including the effect of damage due to a scratch.

Research limitations/implications

The proposed method provides good results and a clear understanding of the fatigue process, however it requires a considerable amount of both material and shot peening parameters.

Practical implications

The methodology presented in this paper allows the determination of fatigue life and the prediction of non‐propagating cracks for components, including the effects of shot peening and scratch damage. These results can be used to quantify the scratch damage limits of components improved by shot peening.

Originality/value

This paper provides a useful tool for prediction of the effects of shot peening and scratch damage on fatigue life, using traditional approaches.

Details

International Journal of Structural Integrity, vol. 3 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 25 May 2012

José A.F.O. Correia, Abilio M.P. de Jesus and Alfonso Fernández‐Canteli

Recently, a new class of fatigue crack growth models based on elastoplastic stress‐strain histories at the crack tip region and strain‐life fatigue damage models have been…

Abstract

Purpose

Recently, a new class of fatigue crack growth models based on elastoplastic stress‐strain histories at the crack tip region and strain‐life fatigue damage models have been proposed. The fatigue crack propagation is understood as a process of continuous crack initializations, over elementary material blocks, which may be governed by strain‐life data of the plain material. The residual stresses developed at the crack tip play a central role in these models, since they are used to assess the actual crack driving force, taking into account mean stresses and loading sequential effects. The UniGrow model fits this particular class of fatigue crack propagation models. The purpose of this paper is to propose an extension of the UniGrow model to derive probabilistic fatigue crack propagation data, in particular the derivation of the P–da/dN–ΔK–R fields.

Design/methodology/approach

An existing deterministic fatigue crack propagation model, based on local strain‐life data is first assessed. In particular, an alternative methodology for residual stress computation is proposed, based on elastoplastic finite element analysis, in order to overcome inconsistencies found in the analytical approximate approaches often used in literature. Then, using probabilistic strain‐life fields, a probabilistic output for the fatigue crack propagation growth rates is generated. A new probabilistic fatigue field is also proposed to take mean stress effects into account, using the Smith‐Watson‐Topper (SWT) damage parameter. The proposed models are assessed using experimental data available for two materials representative from old Portuguese bridges.

Findings

A new method to generate probabilistic fatigue crack propagation rates (P–da/dN–ΔK–R fields) is proposed and verified using puddle iron from old Portuguese bridges, usually characterized by significant scatter in fatigue properties. Also, a new probabilistic fatigue field for plain material is proposed to deal with mean stress effects.

Originality/value

A relation between the P–ε–N and the P–da/dN–ΔK–R fields is firstly proposed in this research. Furthermore, a new PSWTN field is proposed to deal with mean stress effects.

Details

International Journal of Structural Integrity, vol. 3 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 16 November 2012

Mohammad Hadi Hafezi, N. Nik Abdullah, José F.O. Correia and Abílio M.P. De Jesus

Fatigue crack growth models based on elastic‐plastic stress‐strain histories at the crack tip region and strain‐life damage models have been proposed. The UniGrow model fits this…

Abstract

Purpose

Fatigue crack growth models based on elastic‐plastic stress‐strain histories at the crack tip region and strain‐life damage models have been proposed. The UniGrow model fits this particular class of fatigue crack propagation models. The residual stresses developed at the crack tip play a central role in these models, since they are applied to assess the actual crack driving force. This paper aims to assess the performance of the UniGrow model based on available experimental constant amplitude crack propagation data, derived for several metallic materials from representative Portuguese bridges. It also aims to discuss key issues in fatigue crack growth prediction, using the UniGrow model, in particular the residual stress computation and the suitability of fatigue damage rules.

Design/methodology/approach

The UniGrow model is assessed using data derived by the authors for materials from Portuguese riveted metallic bridges. Strain‐life data, from fatigue tests on smooth specimens, are used to propose a convenient fatigue damage model. Predicted crack growth rates are compared with experimental crack propagation data obtained by authors using fatigue tests on compact tension specimens. Since the UniGrow model is a residual stress‐based propagation model, elastoplastic finite element analysis is proposed for comparison with the analytical approach implemented in the original UniGrow model.

Findings

The use of the Smith‐Watson‐Topper damage parameter overestimates the stress R‐ratio effects on crack propagation rates, mainly if the material shows crack propagation rates with small to moderate sensitivity to stress R‐ratio, which is the case of the materials under investigation in this paper. Alternatively, the application of the Coffin‐Manson damage law leads to consistent fatigue crack growth predictions for the investigated range of positive stress R‐ratios. The stress R‐ratios effects may be solely attributed to the residual stresses. Their estimation, using an analytical approach, may lead to inconsistent results, which is demonstrated by an alternative elastoplastic finite element analysis.

Originality/value

Contributions for more accurate predictions of fatigue crack propagation rates, for several stress ratios, using a strain‐based approach is proposed. This approach is valuable since it may be used to reduce the time consuming and costly fatigue crack propagation tests. Furthermore, the proposed approach shows potential for an unified crack initiation and propagation approach.

Details

International Journal of Structural Integrity, vol. 3 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 2 September 2019

Reza Manouchehry Nya, Shahrum Abdullah and Salvinder Singh Karam Singh

The purpose of this paper is to analyse fatigue-life prediction based on a reliability assessment for coil springs of vehicle suspension systems using different road excitations…

Abstract

Purpose

The purpose of this paper is to analyse fatigue-life prediction based on a reliability assessment for coil springs of vehicle suspension systems using different road excitations under random loading.

Design/methodology/approach

In this study, a reliability assessment was conducted to predict the fatigue life of an automobile coil spring during different road data surfaces. Campus, urban and highway road surfaces were considered to capture fatigue load strain histories using a data acquisition system. Random loadings are applied on top of a coil spring where coil is fixed from down. Fatigue reliability was established as a system of correlated events during the service life to predict the probability of fatigue life using Coffin–Manson, Morrow and Smith–Watson–Topper (SWT) models.

Findings

Fatigue-life prediction based on a reliability assessment revealed that the Morrow model can predict a safe region of a life data point for the three road surfaces. Highway road data indicated the highest rate of reliability at 0.8 for approximately 1.69 × 105 cycles for the SWT model.

Originality/value

Reliability assessment of the fatigue life of vehicle coil springs is vital for safe operation. The reliability analysis of a coil spring under random loading excitations can be used for fatigue-life prediction.

Details

International Journal of Structural Integrity, vol. 10 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 25 July 2019

Lennie Abdullah, Salvinder Singh Karam Singh, Abdul Hadi Azman, Shahrum Abdullah, Ahmad Kamal Ariffin Mohd Ihsan and Yat Sheng Kong

This study aims to determine the reliability assessment based on the predicted fatigue life of leaf spring under random strain loading.

Abstract

Purpose

This study aims to determine the reliability assessment based on the predicted fatigue life of leaf spring under random strain loading.

Design/methodology/approach

Random loading data were extracted from three various road conditions at 200 Hz using a strain gauge for a duration of 100 s. The fatigue life was predicted using strain-life approaches of Coffin–Manson, Morrow and Smith–Watson–Topper (SWT) models.

Findings

The leaf spring had the highest fatigue life of 1,544 cycle/block under highway data compared uphill (1,299 cycle/block) and downhill (1,008 cycle/block) data. Besides that, the statistical properties of kurtosis showed that uphill data were the highest at 3.81 resulted in the presence of high amplitude in the strain loading data. For fatigue life-based reliability assessment, the SWT model provided a narrower shape compared to the Coffin–Manson and Morrow models using the Gumbel distribution. The SWT model had the lowest mean cycle to failure of 1,250 cycle/block followed by Morrow model (1,317 cycle/block) and the Coffin–Manson model (1,429 cycle/block). The SWT model considers the mean stress effects by interpreting the strain energy density that will influence the reliability assessment.

Research limitations/implications

The reliability assessment based on fatigue life prediction is conducted using the Gumbel distribution to investigate the behaviour of fatigue random loading, where most previous studies had concentrated on a Weibull distribution on random data.

Originality/value

Thus, this study proposes that the Gumbel distribution is suitable for analysing the reliability of random loading data in assessing with the fatigue life prediction of a heavy vehicle leaf spring.

Details

International Journal of Structural Integrity, vol. 10 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 11 February 2019

Salvinder Singh and Shahrum Abdullah

The purpose of this paper is to present the durability analysis in predicting the reliability life cycle for an automobile crankshaft under random stress load using the stochastic…

Abstract

Purpose

The purpose of this paper is to present the durability analysis in predicting the reliability life cycle for an automobile crankshaft under random stress load using the stochastic process. Due to the limitations associated with the actual loading history obtained from the experimental analysis or due to the sensitivity of the strain gauge, the fatigue reliability life cycle assessment has lower accuracy and efficiency for fatigue life prediction.

Design/methodology/approach

The proposed Markov process embeds the actual maximum and minimum stresses by a continuous updating process for stress load history data. This is to reduce the large credible intervals and missing loading points used for fatigue life prediction. With the reduction and missing loading intervals, the accuracy of fatigue life prediction for the crankshaft was validated using the statistical correlation properties.

Findings

It was observed that fatigue reliability corresponded well by reporting the accuracy of 95–98 per cent with a mean squared error of 1.5–3 per cent for durability and mean cycle to failure. Hence, the proposed fatigue reliability assessment provides an accurate, efficient, fast and cost-effective durability analysis in contrast to costly and lengthy experimental techniques.

Research limitations/implications

An important implication of this study is durability-based life cycle assessment by developing the reliability and hazard rate index under random stress loading using the stochastic technique in modeling for improving the sensitivity of the strain gauge.

Practical implications

The durability analysis is one of the fundamental attributes for the safe operation of any component, especially in the automotive industry. Focusing on safety, structural health monitoring aims at the quantification of the probability of failure under mixed mode loading. In practice, diverse types of protective barriers are placed as safeguards from the hazard posed by the system operation.

Social implications

Durability analysis has the ability to deal with the longevity and dependability of parts, products and systems in any industry. More poignantly, it is about controlling risk whereby engineering incorporates a wide variety of analytical techniques designed to help engineers understand the failure modes and patterns of these parts, products and systems. This would enable the automotive industry to improve design and increase the life cycle with the durability assessment field focussing on product reliability and sustainability assurance.

Originality/value

The accuracy of the simulated fatigue life was statistically correlated with a 95 per cent boundary condition towards the actual fatigue through the validation process using finite element analysis. Furthermore, the embedded Markov process has high accuracy in generating synthetic load history for the fatigue life cycle assessment. More importantly, the fatigue reliability life cycle assessment can be performed with high accuracy and efficiency in assessing the integrity of the component regarding structural integrity.

Details

International Journal of Structural Integrity, vol. 10 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 August 2019

Airee Afiq Abd Rahim, Shahrum Abdullah, Salvinder Singh Karam Singh and Mohd. Zaki Nuawi

The purpose of this paper is to focus on the reliability assessment on the basis of automobile suspension fatigue life using wavelet decomposition method.

Abstract

Purpose

The purpose of this paper is to focus on the reliability assessment on the basis of automobile suspension fatigue life using wavelet decomposition method.

Design/methodology/approach

The discrete wavelet transform (DWT) of automobile coil spring signal is implemented as a response to different road surfaces. A reliability analysis is applied to determine the potential of the wavelet implementation in fatigue life analysis. The signals used in this study are highway and rural road.

Findings

On the basis of the implementation of wavelet decomposition method, low-level decomposition replicates the original signals in comparison with high-level decomposition. The fatigue life of low-level decomposition lies in the 2:1 and 1:2 correlation graph. The percentage difference for mean cycle to failure presents low values for low-level decomposition, with 44.31 per cent for highway and 44.20 per cent for rural road. The percentage of difference for high-level decomposition is high.

Originality/value

The determination of fatigue life analysis by using the DWT method is suitable for low-level decomposition. High-level decomposition is considered noise that cannot be eliminated and does not contribute to the failure of the structure.

Details

International Journal of Structural Integrity, vol. 10 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 October 2019

Cristiane Oliveira Viana, Hermes Carvalho, José Correia, Pedro Aires Montenegro, Raphael Pedrosa Heleno, Guilherme Santana Alencar, Abilio M.P. de Jesus and Rui Calçada

The purpose of this paper is to evaluate the fatigue process through the dynamic analysis of the global structural model and local static sub-modelling in a critical detail using…

Abstract

Purpose

The purpose of this paper is to evaluate the fatigue process through the dynamic analysis of the global structural model and local static sub-modelling in a critical detail using the hot-spot stress approach. The detail was studied in three different positions at the “Alcácer do Sal” access viaduct, and the methodologies from the IIW and Eurocode EN 1993-1-9 were compared.

Design/methodology/approach

In this study, the fatigue life process based on the hot-spot stress approach was evaluated using a global dynamic analysis and a local sub-modelling based on a static analysis of welded connections in the “Alcácer do Sal” railway structure, Portugal, taking into consideration the recommendations from IIW and Eurocode EN 1993-1-9. The hot-spot stresses were calculated through the static analysis of the sub-model of the welded connection for each vibration mode with the aim to obtain the temporal stresses using the modal coordinates and modal stresses of the extrapolation points. The Ansys® and Matlab® softwares were used for the numerical analysis and the hot-spot stress calculations, respectively.

Findings

The proposed methodology/approach to obtain fatigue assessment is based on the modal analysis of the global structural model and local static sub-modelling. The modal analysis was used to extract the boundary conditions to be used in the local model to determine the temporal stresses of the extrapolation points. Based on the modal superposition method, the stresses as function of time were obtained for fatigue life evaluation of a critical detail by the hot-spot stress approach. The detail was studied in three different positions.

Originality/value

In the present study, a global-local fatigue methodology based on dynamic analysis of the global structural model and local static sub-modelling of the critical detail using the hot-spot stress approach is proposed. Herein, the modal analysis of the global structural model supported by the modal superposition method was used to obtain the matrix of modal coordinates. The static analysis of the local sub-model for each mode from the modal analysis of global structural model was done to estimate the hot-spot stresses. The fatigue damage calculation was based on S-N curve of the critical detail and rainflow method. The IIW recommendation proved to be more conservative compared to the proposed rules in the Eurocode EN 1993-1-9. The global-local modelling based on dynamic analysis is an important and effective tool for fatigue evaluation in welded joints.

Details

International Journal of Structural Integrity, vol. 12 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 4 December 2017

Aleksandra Królicka, Grzegorz Lesiuk and Mikołaj Katkowski

The purpose of this paper is to present a case of fatigue damaging of the attacking roller of the WRC class car. Fatigue fractures are a very essential source of cognitive and…

192

Abstract

Purpose

The purpose of this paper is to present a case of fatigue damaging of the attacking roller of the WRC class car. Fatigue fractures are a very essential source of cognitive and usable information about the cause of damage of various engineering components. Microfractography allows extending considerations about the main mechanism of initiation and growth of fatigue cracks. The presented research procedure allowed establishing the root cause analysis of the premature fatigue failure of the pinion shaft.

Design/methodology/approach

The specimen for metallographic investigation was extracted from failures pinion shaft. According to the light microscopy and scanning electron microscopy (SEM) study, the detailed observations of microstructure were performed. Fracture surface of pinion shaft and teeth were examined using SEM. The presence of the extraordinary mechanical notch was found as a potential failure root cause.

Findings

The potential cause of premature failure pinion shaft assembly has been found. The microstructural causes were excluded due to correctly performed heat treatment. The main reason of failure was improper mechanical machining of the pinion shaft due to large mechanical notch.

Originality/value

A detailed metallographic expertise route is presented. The usefulness of fractographic analysis is confirmed in case of the failure analysis of premature pinion shaft. The root cause was found and the concluding remarks are included in this paper.

Details

International Journal of Structural Integrity, vol. 8 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 54