Search results

1 – 10 of 82
Article
Publication date: 1 October 2019

Cristiane Oliveira Viana, Hermes Carvalho, José Correia, Pedro Aires Montenegro, Raphael Pedrosa Heleno, Guilherme Santana Alencar, Abilio M.P. de Jesus and Rui Calçada

The purpose of this paper is to evaluate the fatigue process through the dynamic analysis of the global structural model and local static sub-modelling in a critical detail using…

Abstract

Purpose

The purpose of this paper is to evaluate the fatigue process through the dynamic analysis of the global structural model and local static sub-modelling in a critical detail using the hot-spot stress approach. The detail was studied in three different positions at the “Alcácer do Sal” access viaduct, and the methodologies from the IIW and Eurocode EN 1993-1-9 were compared.

Design/methodology/approach

In this study, the fatigue life process based on the hot-spot stress approach was evaluated using a global dynamic analysis and a local sub-modelling based on a static analysis of welded connections in the “Alcácer do Sal” railway structure, Portugal, taking into consideration the recommendations from IIW and Eurocode EN 1993-1-9. The hot-spot stresses were calculated through the static analysis of the sub-model of the welded connection for each vibration mode with the aim to obtain the temporal stresses using the modal coordinates and modal stresses of the extrapolation points. The Ansys® and Matlab® softwares were used for the numerical analysis and the hot-spot stress calculations, respectively.

Findings

The proposed methodology/approach to obtain fatigue assessment is based on the modal analysis of the global structural model and local static sub-modelling. The modal analysis was used to extract the boundary conditions to be used in the local model to determine the temporal stresses of the extrapolation points. Based on the modal superposition method, the stresses as function of time were obtained for fatigue life evaluation of a critical detail by the hot-spot stress approach. The detail was studied in three different positions.

Originality/value

In the present study, a global-local fatigue methodology based on dynamic analysis of the global structural model and local static sub-modelling of the critical detail using the hot-spot stress approach is proposed. Herein, the modal analysis of the global structural model supported by the modal superposition method was used to obtain the matrix of modal coordinates. The static analysis of the local sub-model for each mode from the modal analysis of global structural model was done to estimate the hot-spot stresses. The fatigue damage calculation was based on S-N curve of the critical detail and rainflow method. The IIW recommendation proved to be more conservative compared to the proposed rules in the Eurocode EN 1993-1-9. The global-local modelling based on dynamic analysis is an important and effective tool for fatigue evaluation in welded joints.

Details

International Journal of Structural Integrity, vol. 12 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 28 February 2023

Natalia García-Fernández, Manuel Aenlle, Adrián Álvarez-Vázquez, Miguel Muniz-Calvente and Pelayo Fernández

The purpose of this study is to review the existing fatigue and vibration-based structural health monitoring techniques and highlight the advantages of combining both approaches.

Abstract

Purpose

The purpose of this study is to review the existing fatigue and vibration-based structural health monitoring techniques and highlight the advantages of combining both approaches.

Design/methodology/approach

Fatigue monitoring requires a fatigue model of the material, the stresses at specific points of the structure, a cycle counting technique and a fatigue damage criterion. Firstly, this paper reviews existing structural health monitoring (SHM) techniques, addresses their principal classifications and presents the main characteristics of each technique, with a particular emphasis on modal-based methodologies. Automated modal analysis, damage detection and localisation techniques are also reviewed. Fatigue monitoring is an SHM technique which evaluate the structural fatigue damage in real time. Stress estimation techniques and damage accumulation models based on the S-N field and the Miner rule are also reviewed in this paper.

Findings

A vast amount of research has been carried out in the field of SHM. The literature about fatigue calculation, fatigue testing, fatigue modelling and remaining fatigue life is also extensive. However, the number of publications related to monitor the fatigue process is scarce. A methodology to perform real-time structural fatigue monitoring, in both time and frequency domains, is presented.

Originality/value

Fatigue monitoring can be combined (applied simultaneously) with other vibration-based SHM techniques, which might significantly increase the reliability of the monitoring techniques.

Details

International Journal of Structural Integrity, vol. 14 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 6 February 2023

Hong Zhang, Lu-Kai Song, Guang-Chen Bai and Xue-Qin Li

The purpose of this study is to improve the computational efficiency and accuracy of fatigue reliability analysis.

Abstract

Purpose

The purpose of this study is to improve the computational efficiency and accuracy of fatigue reliability analysis.

Design/methodology/approach

By absorbing the advantages of Markov chain and active Kriging model into the hierarchical collaborative strategy, an enhanced active Kriging-based hierarchical collaborative model (DCEAK) is proposed.

Findings

The analysis results show that the proposed DCEAK method holds high accuracy and efficiency in dealing with fatigue reliability analysis with high nonlinearity and small failure probability.

Research limitations/implications

The effectiveness of the presented method in more complex reliability analysis problems (i.e. noisy problems, high-dimensional issues etc.) should be further validated.

Practical implications

The current efforts can provide a feasible way to analyze the reliability performance and identify the sensitive variables in aeroengine mechanisms.

Originality/value

To improve the computational efficiency and accuracy of fatigue reliability analysis, an enhanced active DCEAK is proposed and the corresponding fatigue reliability framework is established for the first time.

Details

International Journal of Structural Integrity, vol. 14 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 17 January 2022

Xintian Liu, Que Wu, Shengchao Su and Yansong Wang

The properties of materials under impact load are introduced in terms of metal, nonmetallic materials and composite materials. And the application of impact load research in…

Abstract

Purpose

The properties of materials under impact load are introduced in terms of metal, nonmetallic materials and composite materials. And the application of impact load research in biological fields is also mentioned. The current hot research topics and achievements in this field are summarized. In addition, some problems in theoretical modeling and testing of the mechanical properties of materials are discussed.

Design/methodology/approach

The situation of materials under impact load is of great significance to show the mechanical performance. The performance of various materials under impact load is different, and there are many research methods. It is affected by some kinds of factors, such as the temperature, the gap and the speed of load.

Findings

The research on mechanical properties of materials under impact load has the characteristics as fellow. It is difficult to build the theoretical model, verify by experiment and analyze the data accumulation.

Originality/value

This review provides a reference for further study of material properties.

Details

International Journal of Structural Integrity, vol. 13 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 7 December 2021

Chunliang Niu, Suming Xie and Tao Zhang

In order to obtain the relationship between the geometry and stress concentration of load-bearing welded joints, the fatigue design method of welded structures based on stiffness…

Abstract

Purpose

In order to obtain the relationship between the geometry and stress concentration of load-bearing welded joints, the fatigue design method of welded structures based on stiffness coordination strategy is studied.

Design/methodology/approach

Based on the structural stress theory, a new method for anti-fatigue design of welded structures oriented to stiffness coordination strategy is proposed, and the detailed implementation process of this method is given. This method is also called the three-stage anti-fatigue design method for welded structures, which includes three stages, namely, identification, analysis and relief of stress concentration.

Findings

Through the experimental analysis of welded joints in IIW standard, the effectiveness of stiffness coordination in welded joint design is proved. The method is applied to the design of welded parts and products, and the feasibility of the method in alleviating the phenomenon of stress concentration and improving the fatigue resistance of welded structures is verified.

Originality/value

In this study, based on the principle of coordinated design of weld stiffness, a three-stage anti-fatigue design method of welded structure is proposed. The method has practical value for the optimization design and anti-fatigue performance improvement of welded structure in engineering products.

Details

International Journal of Structural Integrity, vol. 13 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 14 November 2023

Chunliang Niu

To obtain better fatigue resistance for marine engineering equipment welded joints in the design stage, the design method of the marine engineering equipment welded joint design…

Abstract

Purpose

To obtain better fatigue resistance for marine engineering equipment welded joints in the design stage, the design method of the marine engineering equipment welded joint design stage needs to be studied.

Design/methodology/approach

Based on the structural stress theory, a design method of the marine engineering equipment welded joints with better fatigue performance is proposed. The effectiveness of the method is demonstrated through the simulation analysis and fatigue test of typical marine engineering equipment welded joints.

Findings

Methods based on the theoretical advantages of structural stress and the principle of ensuring that the welded joint has a low degree of stress concentration.

Originality/value

The design method of marine engineering equipment welded joints proposed in this study provides a set of operable design routes for technicians, which can better meet the needs of engineering applications.

Details

International Journal of Structural Integrity, vol. 15 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 8 August 2020

Tayeb Kebir, José Correia, Mohamed Benguediab and Abilio M.P. de Jesus

The purpose of this scientific work is to simulate the fatigue damage under random loading taking into account the mean stress effect on fatigue lifetime and using the rainflow…

Abstract

Purpose

The purpose of this scientific work is to simulate the fatigue damage under random loading taking into account the mean stress effect on fatigue lifetime and using the rainflow counting technique to assess the fatigue damage.

Design/methodology/approach

The study of fatigue under random loading is based on same concepts which as constant loading with addition of damage summation. The damage of materials due a stress cycle depends not only on the alternating stress but also on the mean stress.

Findings

The cycles counting simulation method allows quantifying the hysteresis loops, even if for small amplitude stresses.

Originality/value

The cycles are low or medium; the damage occurs most often, the higher values of alternating stresses cause the most failure of materials.

Details

International Journal of Structural Integrity, vol. 12 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 19 October 2022

Jiafeng Lai, Yuhan Wang, Yuwei Wei, Jinlu Liang and Xintian Liu

The purpose of the paper is to predict the residual life of liquid-storage tank to ensure safety and long-term service life of the structure.

39

Abstract

Purpose

The purpose of the paper is to predict the residual life of liquid-storage tank to ensure safety and long-term service life of the structure.

Design/methodology/approach

The paper carried out the stress analysis of the wall plate and bottom plate of the liquid-storage tank, and the influence of circumferential stress on the tank is considered. On the other hand, considering the influence of the tank wall surface on the tank life, based on the Paris law, the surface processing coefficient and surface roughness coefficient are introduced to improve the Paris law.

Findings

The effectiveness of the improved model is verified by comparing with theoretical and experimental data, which provide a new method for the prediction of the remaining service life of the tank. Combined with the fatigue crack data in the test report and the calculated circumferential stress, the residual life of the storage tank is predicted.

Originality/value

The improved model provides a new method for the prediction of the remaining service life of the tank.

Details

International Journal of Structural Integrity, vol. 13 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 12 April 2022

Qing-Yun Deng, Shun-Peng Zhu, Jin-Chao He, Xue-Kang Li and Andrea Carpinteri

Engineering components/structures with geometric discontinuities normally bear complex and variable loads, which lead to a multiaxial and random/variable amplitude stress/strain…

Abstract

Purpose

Engineering components/structures with geometric discontinuities normally bear complex and variable loads, which lead to a multiaxial and random/variable amplitude stress/strain state. Hence, this study aims how to effectively evaluate the multiaxial random/variable amplitude fatigue life.

Design/methodology/approach

Recent studies on critical plane method under multiaxial random/variable amplitude loading are reviewed, and the computational framework is clearly presented in this paper.

Findings

Some basic concepts and latest achievements in multiaxial random/variable amplitude fatigue analysis are introduced. This review summarizes the research status of four main aspects of multiaxial fatigue under random/variable amplitude loadings, namely multiaxial fatigue criterion, method for critical plane determination, cycle counting method and damage accumulation criterion. Particularly, the latest achievements of multiaxial random/variable amplitude fatigue using critical plane methods are classified and highlighted.

Originality/value

This review attempts to provide references for further research on multiaxial random/variable amplitude fatigue and to promote the development of multiaxial fatigue from experimental research to practical engineering application.

Details

International Journal of Structural Integrity, vol. 13 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 27 January 2022

Matthias Kowalski, Martin Hanke and Christian Kreischer

Resolving eddy currents in three dimensions with finite elements, especially in geometrically complex structures, is very time consuming. Notable additional efforts will be…

Abstract

Purpose

Resolving eddy currents in three dimensions with finite elements, especially in geometrically complex structures, is very time consuming. Notable additional efforts will be required, if these eddy currents are influenced by magnetic fields arising from larger parts or range over widespread regions. The purpose of this article is to present a new sub-modelling simulation technique, based on the finite-element approach. This method offers remarkable advantages for solving this type of problems.

Design/methodology/approach

A novel sub-modeling technique is developed for the finite-element method addressing this problem by dividing the process into two steps: firstly, a simulation of a “source”-model is carried out providing magnetic field distributions within the entire domain neglecting local eddy current effects and without modeling it in full detailed geometry. A subsequent “sub”-model comprises only the region of interest in higher resolution and is solved while being constrained with boundary conditions derived from the previous source-model. An implementation in ANSYS Mechanical is carried out with the objective to validate finite-element simulation against measurement results.

Findings

The proposed simulation technique performs robustly and time efficiently. Applying this method to an end-region of a turbogenerator allows comparisons with test data of this region for validation purposes. The comparison between measured and simulated radial flux densities shows good correspondence.

Originality/value

This work is novel in many aspects: a new technique for three-dimensional (3D) finite-element method using edge-elements is introduced. To the best of the authors’ knowledge, for the first time, these 3D sub-models are compared against measurement results of an electric machine with net currents. Leveraged from this work, detailed analyses of eddy current phenomena under influences of external magnetic fields can be investigated in higher detail within shorter calculation times.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 82