Search results

1 – 10 of over 12000
Open Access
Article
Publication date: 10 December 2021

Pingan Zhu, Chao Zhang and Jun Zou

The purpose of the work is to provide a comprehensive review of the digital image correlation (DIC) technique for those who are interested in performing the DIC technique in the…

Abstract

Purpose

The purpose of the work is to provide a comprehensive review of the digital image correlation (DIC) technique for those who are interested in performing the DIC technique in the area of manufacturing.

Design/methodology/approach

No methodology was used because the paper is a review article.

Findings

no fundings.

Originality/value

Herein, the historical development, main strengths and measurement setup of DIC are introduced. Subsequently, the basic principles of the DIC technique are outlined in detail. The analysis of measurement accuracy associated with experimental factors and correlation algorithms is discussed and some useful recommendations for reducing measurement errors are also offered. Then, the utilization of DIC in different manufacturing fields (e.g. cutting, welding, forming and additive manufacturing) is summarized. Finally, the current challenges and prospects of DIC in intelligent manufacturing are discussed.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 2 no. 2
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 28 November 2023

Xindang He, Run Zhou, Zheyuan Liu, Suliang Yang, Ke Chen and Lei Li

The purpose of this paper is to provide a comprehensive review of a non-contact full-field optical measurement technique known as digital image correlation (DIC).

Abstract

Purpose

The purpose of this paper is to provide a comprehensive review of a non-contact full-field optical measurement technique known as digital image correlation (DIC).

Design/methodology/approach

The approach of this review paper is to introduce the research pertaining to DIC. It comprehensively covers crucial facets including its principles, historical development, core challenges, current research status and practical applications. Additionally, it delves into unresolved issues and outlines future research objectives.

Findings

The findings of this review encompass essential aspects of DIC, including core issues like the subpixel registration algorithm, camera calibration, measurement of surface deformation in 3D complex structures and applications in ultra-high-temperature settings. Additionally, the review presents the prevailing strategies for addressing these challenges, the most recent advancements in DIC applications across quasi-static, dynamic, ultra-high-temperature, large-scale and micro-scale engineering domains, along with key directions for future research endeavors.

Originality/value

This review holds a substantial value as it furnishes a comprehensive and in-depth introduction to DIC, while also spotlighting its prospective applications.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 February 2001

D.W. Lloyd, D.G. Neilly and D.B. Brook

Almost all end-uses of fabrics make use of the ability of fabrics to suffer strains that are very large compared to engineering strains. This paper is the first of a series…

Abstract

Almost all end-uses of fabrics make use of the ability of fabrics to suffer strains that are very large compared to engineering strains. This paper is the first of a series devoted to the measurement of large strains in fabrics. This paper considers some of the problems of fabric strain measurement and describes the use of piezoelectric polyvinylidene fluoride film as the active element in an extensible strain sensor. Strain sensors based on this film are suitable for use with many industrial fabrics, for measuring strains that vary over time with periods of a few seconds or less.

Details

Research Journal of Textile and Apparel, vol. 5 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 5 June 2007

Gao Zhan‐feng, Du Yan‐liang, Sun Bao‐chen and Jin Xiu‐mei

The purpose of this article is to suggest that Fraby‐Perot optic sensor is a practical measurement gage to monitor the strain of great structures such as railway bridges.

1585

Abstract

Purpose

The purpose of this article is to suggest that Fraby‐Perot optic sensor is a practical measurement gage to monitor the strain of great structures such as railway bridges.

Design/methodology/approach

A remote strain monitoring system based on F‐P optic fiber and virtual instrument is designed to monitor the strains of a railway bridge.

Findings

The application results show that the Fraby‐Perot optical fiber sensors can accurately measure strain and they are suitable for the long‐term and automatic monitoring. In addition, the system has several advantages over conventional structural instruments including fast response, ability of both static and dynamic monitoring, absolute measurement, immunity to interferences such as lightning strikes, electromagnetic noise and radio frequency, low attenuation of light signals in long fiber optic cables.

Practical implications

Health monitoring of structures is getting more and more recognition all over the world because it can minimize the cost of reparation and maintenance and ensure the safety of structures. A strain monitoring system based on F‐P optic fiber sensor was developed according to the health monitoring requirements of Wuhu Yangtze River Railway Bridge, which is the first cable‐stayed bridge with a maximum span of 312 m carrying both railway and highway traffic in China. It has run stably in the monitoring field more than two years and fulfilled the monitoring requirement very well. Now the system has been transplanted successfully to the Zhengzhou Yellow Railway Bridge for strain monitoring. So the work can be referenced by other similar health monitoring projects.

Originality/value

Long‐term, real‐time monitoring of strain using FP fiber optic sensors in railway bridge is an innovation. A remote strain data acquisition and real‐time processing are another character of the system. The work studied can be referenced by other structures monitoring, such as tunnel, concrete bridges, concrete and earth dams.

Details

Journal of Quality in Maintenance Engineering, vol. 13 no. 2
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 25 January 2011

Sari Merilampi, Toni Björninen, Leena Ukkonen, Pekka Ruuskanen and Lauri Sydänheimo

The purpose of this paper is to develop a wireless strain sensor for measuring large strains. The sensor is based on passive ultra high‐frequency radio frequency identification…

1659

Abstract

Purpose

The purpose of this paper is to develop a wireless strain sensor for measuring large strains. The sensor is based on passive ultra high‐frequency radio frequency identification (RFID) technology and it can be embedded into a variety of structures.

Design/methodology/approach

Silver ink conductors and RFID tags were printed by the screen printing method on stretchable polyvinyl chloride and fabric substrates. The development of the strain‐sensitive RFID tag was based on the behavior of the selected antenna and substrate materials. Performance of the tags and the effect of mechanical strain on tag functioning were examined.

Findings

The results showed that large displacements can be successfully measured wirelessly using a stretchable RFID tag as a strain‐sensitive structure. The behavior of the tag can be modified by selection of the material.

Research limitations/implications

New tag designs, which are more sensitive to small levels of strain and which have a linear response will be the subject for future work. Tag performance under cyclic loading and in a real environment will also be investigated. Future work relating the investigation of practical applications and the system designing for the strain sensor will also be required.

Practical implications

Printing is fast and simple manufacturing process which does not produce much waste or material loss. The sensor is a new application of printed electronics. It also provides new opportunities for system designers.

Originality/value

The paper provides a new kind of wireless strain sensor which can be integrated into many structures (i.e. clothes). The sensor is a new application of printed electronics and it is made from novel materials.

Details

Sensor Review, vol. 31 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 August 2023

Dhinesh S.K. and Senthil Kumar Kallippatti Lakshmanan

The purpose of this study is to increasing the gauge factor, reducing the hysteresis error and improving the stability over cyclic deformations of a conductive polylactic acid…

Abstract

Purpose

The purpose of this study is to increasing the gauge factor, reducing the hysteresis error and improving the stability over cyclic deformations of a conductive polylactic acid (CPLA)-based 3D-printed strain sensor by modifying the sensing element geometry.

Design/methodology/approach

Five different configurations, namely, linear, serpentine, square, triangular and trapezoidal, of CPLA sensing elements are printed on the thermoplastic polyurethane substrate material individually. The resistance change ratio of the printed sensors, when loaded to a predefined percentage of the maximum strain values over multiple cycles, is recorded. Finally, the thickness of substrate and CPLA and the included angle of the triangular strain sensor are evaluated for their influences on the sensitivity.

Findings

The triangular configuration yields the least hysteresis error with high accuracy over repeated loading conditions, because of its uniform stress distribution, whereas the conventional linear configuration produces the maximum sensitivity with low accuracy. The thickness of the substrate and sensing element has more influence over the included angle, in enhancing the sensitivity of the triangular configuration. The sensitivity of the triangular configuration exceeds the linear configuration when printed at ideal sensor dimensional values.

Research limitations/implications

The 3D printing parameters are kept constant for all the configurations; rather it can be varied for improving the performance of the sensor. Furthermore, the influences of stretching rate and nozzle temperature of the sensing material are not considered in this work.

Originality/value

The sensitivity and accuracy of CPLA-based strain sensor are evaluated for modification in its geometry, and the performance metrics are enhanced using the regression modelling.

Details

Rapid Prototyping Journal, vol. 29 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 February 1944

J.C. King

DURING recent years strain gauges have been used more and more in the aircraft industry as a means of assessing the loads in aircraft structures, both in structural testing…

Abstract

DURING recent years strain gauges have been used more and more in the aircraft industry as a means of assessing the loads in aircraft structures, both in structural testing laboratories and in flight. This increased use can be mainly attributed to the satisfactory development of successful electrical strain gauges of the resistance type and to the demand by engineers for a more complete knowledge of the load distribution in modern aircraft structures. Electrical strain gauges, although requiring accurate apparatus and a large amount of electrical wiring in addition, are much more easily attached to the structure than mechanical gauges and have the great advantage that they can be mounted in positions inaccessible to most mechanical gauges. This increased use of such gauges has been applied to the determination of the loads in tubes under combined bending and direct loading and to obtaining the direct and shear stresses in sheets and panels. The results of all this has been that more engineers have had reason to use the basic formulae for determining these quantities from the measured strains on three or more gauge lines.

Details

Aircraft Engineering and Aerospace Technology, vol. 16 no. 2
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 July 1955

B.R. Noton

A two‐spar cantilever box beam with forty‐five degrees sweep and oblique ribs placed parallel to the root clamping section was the subject of a series of static tests. Stress and…

Abstract

A two‐spar cantilever box beam with forty‐five degrees sweep and oblique ribs placed parallel to the root clamping section was the subject of a series of static tests. Stress and strain distributions were determined, primarily in a region distant from the root and tip disturbances, to permit a stringent comparison with three well‐known swept wing theories and the simple theory of bending. Torsional and flexural stiffnesses were also measured and compared with these theories. The sequence of calculation for each method is presented and it is found that two of the theories provide accurate predictions of the stresses, strains and stiffnesses. The influence of rivet slip and rivet flexibility on the stiffnesses of the box is mentioned. As a secondary aim of the investigation, the distribution of normal and shear strain has been measured in the cover skin and spar webs at the root connexion. The design of swept box examined has been the subject of research in a number of establishments and a review of this other work is included.

Details

Aircraft Engineering and Aerospace Technology, vol. 27 no. 7
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 February 2002

D.W. Lloyd, C.D. Price, C. Wild and D.B. Brook

The method of measuring strain fields in fabrics, described earlier, is applied to an example of heavy industrial fabrics. The example chosen is that of heavy woven conveyor…

Abstract

The method of measuring strain fields in fabrics, described earlier, is applied to an example of heavy industrial fabrics. The example chosen is that of heavy woven conveyor belts. Conveyor belts are limited in their load rating and fatigue life by the means used to join them together. Two forms of joint are used, mechanical joints and spliced joints. Experimentally determined strain fields are used to explain the mechanisms of failure of each type of joint, and to assess the effectiveness of a modified joint. Measurements of strains through the thickness of spliced joints are used to contribute to the understanding of failure mechanisms in such joints.

Details

Research Journal of Textile and Apparel, vol. 6 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 3 May 2016

Julián Sierra-Pérez and Alfredo Güemes

The purpose of this paper is to study techniques of pattern recognition in the strain field as structural health monitoring tools. The changes in the strain field may be very…

Abstract

Purpose

The purpose of this paper is to study techniques of pattern recognition in the strain field as structural health monitoring tools. The changes in the strain field may be very intense at the tip of a crack but smooth out very quickly. So trying to get information about damage occurrence from strain measurements is a difficult task, as the detected strain changes may be very small and masked by temperature drifting, load changes or any other environmental factor.

Design/methodology/approach

It drives to the need to include a large sensor array into the structure, which is not difficult when using optical fiber sensors. Experiments were done on a simple cantilever beam, instrumented with 32 sensors and submitted to loads and progressive damage conditions. The same approach was applied to a more complex structure, the wing of an unmanned air vehicle (UAV) made in composite materials.

Findings

Algorithms based on principal component analysis (PCA), damage indices and damage thresholds were used and shown to be simple and robust enough for this task.

Originality/value

The data treatment was done in a fully automated approach; an algorithm to compare and extract information from the multiple strain measurements was developed for this task.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 88 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of over 12000