Search results

1 – 10 of 12
Article
Publication date: 23 January 2024

Guoyang Wan, Yaocong Hu, Bingyou Liu, Shoujun Bai, Kaisheng Xing and Xiuwen Tao

Presently, 6 Degree of Freedom (6DOF) visual pose measurement methods enjoy popularity in the industrial sector. However, challenges persist in accurately measuring the visual…

Abstract

Purpose

Presently, 6 Degree of Freedom (6DOF) visual pose measurement methods enjoy popularity in the industrial sector. However, challenges persist in accurately measuring the visual pose of blank and rough metal casts. Therefore, this paper introduces a 6DOF pose measurement method utilizing stereo vision, and aims to the 6DOF pose measurement of blank and rough metal casts.

Design/methodology/approach

This paper studies the 6DOF pose measurement of metal casts from three aspects: sample enhancement of industrial objects, optimization of detector and attention mechanism. Virtual reality technology is used for sample enhancement of metal casts, which solves the problem of large-scale sample sampling in industrial application. The method also includes a novel deep learning detector that uses multiple key points on the object surface as regression objects to detect industrial objects with rotation characteristics. By introducing a mixed paths attention module, the detection accuracy of the detector and the convergence speed of the training are improved.

Findings

The experimental results show that the proposed method has a better detection effect for metal casts with smaller size scaling and rotation characteristics.

Originality/value

A method for 6DOF pose measurement of industrial objects is proposed, which realizes the pose measurement and grasping of metal blanks and rough machined casts by industrial robots.

Details

Sensor Review, vol. 44 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 28 November 2023

Xindang He, Run Zhou, Zheyuan Liu, Suliang Yang, Ke Chen and Lei Li

The purpose of this paper is to provide a comprehensive review of a non-contact full-field optical measurement technique known as digital image correlation (DIC).

Abstract

Purpose

The purpose of this paper is to provide a comprehensive review of a non-contact full-field optical measurement technique known as digital image correlation (DIC).

Design/methodology/approach

The approach of this review paper is to introduce the research pertaining to DIC. It comprehensively covers crucial facets including its principles, historical development, core challenges, current research status and practical applications. Additionally, it delves into unresolved issues and outlines future research objectives.

Findings

The findings of this review encompass essential aspects of DIC, including core issues like the subpixel registration algorithm, camera calibration, measurement of surface deformation in 3D complex structures and applications in ultra-high-temperature settings. Additionally, the review presents the prevailing strategies for addressing these challenges, the most recent advancements in DIC applications across quasi-static, dynamic, ultra-high-temperature, large-scale and micro-scale engineering domains, along with key directions for future research endeavors.

Originality/value

This review holds a substantial value as it furnishes a comprehensive and in-depth introduction to DIC, while also spotlighting its prospective applications.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 2 May 2023

Hang Guo, Xin Chen, Min Yu, Marcin Uradziński and Liang Cheng

In this study, an indoor sensor information fusion positioning system of the quadrotor unmanned aerial vehicle (UAV) was investigated to solve the problem of unstable indoor…

Abstract

Purpose

In this study, an indoor sensor information fusion positioning system of the quadrotor unmanned aerial vehicle (UAV) was investigated to solve the problem of unstable indoor flight positioning.

Design/methodology/approach

The presented system was built on Light Detection and Ranging (LiDAR), Inertial Measurement Unit (IMU) and LiDAR-Lite devices. Based on this, one can obtain the aircraft's current attitude and the position vector relative to the target and control the attitudes and positions of the UAV to reach the specified target positions. While building a UAV positioning model relative to the target for indoor positioning scenarios under limited Global Navigation Satellite Systems (GNSS), the system detects the environment through the NVIDIA Jetson TX2 (Transmit Data) peripheral sensor, obtains the current attitude and the position vector of the UAV, packs the data in the format and delivers it to the flight controller. Then the flight controller controls the UAV by calculating the posture to reach the specified target position.

Findings

The authors used two systems in the experiment. The first is the proposed UAV, and the other is the Vicon system, our reference system for comparison purposes. Vicon positioning error can be considered lower than 2 mm from low to high-speed experiments. After comparison, experimental results demonstrated that the system could fully meet the requirements (less than 50 mm) in real-time positioning of the indoor quadrotor UAV flight. It verifies the accuracy and robustness of the proposed method compared with that of Vicon and achieves the aim of a stable indoor flight preliminarily.

Originality/value

Vicon positioning error can be considered lower than 2 mm from low to high-speed experiments. After comparison, experimental results demonstrated that the system could fully meet the requirements (less than 50 mm) in real-time positioning of the indoor quadrotor UAV flight. It verifies the accuracy and robustness of the proposed method compared with that of Vicon and achieves the aim of a stable indoor flight preliminarily.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 29 February 2024

Heng Liu, Yonghua Lu, Haibo Yang, Lihua Zhou and Qiang Feng

In the context of fixed-wing aircraft wing assembly, there is a need for a rapid and precise measurement technique to determine the center distance between two double-hole…

Abstract

Purpose

In the context of fixed-wing aircraft wing assembly, there is a need for a rapid and precise measurement technique to determine the center distance between two double-hole components. This paper aims to propose an optical-based spatial point distance measurement technique using the spatial triangulation method. The purpose of this paper is to design a specialized measurement system, specifically a spherically mounted retroreflector nest (SMR nest), equipped with two laser displacement sensors and a rotary encoder as the core to achieve accurate distance measurements between the double holes.

Design/methodology/approach

To develop an efficient and accurate measurement system, the paper uses a combination of laser displacement sensors and a rotary encoder within the SMR nest. The system is designed, implemented and tested to meet the requirements of precise distance measurement. Software and hardware components have been developed and integrated for validation.

Findings

The optical-based distance measurement system achieves high precision at 0.04 mm and repeatability at 0.02 mm within a range of 412.084 mm to 1,590.591 mm. These results validate its suitability for efficient assembly processes, eliminating repetitive errors in aircraft wing assembly.

Originality/value

This paper proposes an optical-based spatial point distance measurement technique, as well as a unique design of a SMR nest and the introduction of two novel calibration techniques, all of which are validated by the developed software and hardware platform.

Details

Sensor Review, vol. 44 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 12 September 2023

Yang Zhou, Long Wang, Yongbin Lai and Xiaolong Wang

The coupling process between the loading mechanism and the tank car mouth is a crucial step in the tank car loading process. The purpose of this paper is to design a method to…

Abstract

Purpose

The coupling process between the loading mechanism and the tank car mouth is a crucial step in the tank car loading process. The purpose of this paper is to design a method to accurately measure the pose of the tanker car.

Design/methodology/approach

The collected image is first subjected to a gray enhancement operation, and the black parts of the image are extracted using Otsu’s threshold segmentation and morphological processing. The edge pixels are then filtered to remove outliers and noise, and the remaining effective points are used to fit the contour information of the tank car mouth. Using the successfully extracted contour information, the pose information of the tank car mouth in the camera coordinate system is obtained by establishing a binocular projection elliptical cone model, and the pixel position of the real circle center is obtained through the projection section. Finally, the binocular triangulation method is used to determine the position information of the tank car mouth in space.

Findings

Experimental results have shown that this method for measuring the position and orientation of the tank car mouth is highly accurate and can meet the requirements for industrial loading accuracy.

Originality/value

A method for extracting the contours of various types of complex tanker mouth is proposed. This method can accurately extract the contour of the tanker mouth when the contour is occluded or disturbed. Based on the binocular elliptic conical model and perspective projection theory, an innovative method for measuring the pose of the tanker mouth is proposed, and according to the space characteristics of the tanker mouth itself, the ambiguity of understanding is removed. This provides a new idea for the automatic loading of ash tank cars.

Details

Robotic Intelligence and Automation, vol. 43 no. 6
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 31 May 2023

Xu Jingbo, Li Qiaowei and White Bai

The purpose of this study is solving the hand–eye calibration issue for line structured light vision sensor. Only after hand–eye calibration the sensor measurement data can be…

Abstract

Purpose

The purpose of this study is solving the hand–eye calibration issue for line structured light vision sensor. Only after hand–eye calibration the sensor measurement data can be applied to robot system.

Design/methodology/approach

In this paper, the hand–eye calibration methods are studied, respectively, for eye-in-hand and eye-to-hand. Firstly, the coordinates of the target point in robot system are obtained by tool centre point (TCP), then the robot is controlled to make the sensor measure the target point in multiple poses and the measurement data and pose data are obtained; finally, the sum of squared calibration errors is minimized by the least square method. Furthermore, the missing vector in the process of solving the transformation matrix is obtained by vector operation, and the complete matrix is obtained.

Findings

On this basis, the sensor measurement data can be easily and accurately converted to the robot coordinate system by matrix operation.

Originality/value

This method has no special requirement for robot pose control, and its calibration process is fast and efficient, with high precision and has practical popularized value.

Details

Sensor Review, vol. 43 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 3 July 2023

Yupeng Mou, Jiao Fan, Zhihua Ding and Inayat Khan

In order to encourage customers to try experience virtual tourism, researchers and practitioners pay more attention on how to improve customers' perception of authenticity.

Abstract

Purpose

In order to encourage customers to try experience virtual tourism, researchers and practitioners pay more attention on how to improve customers' perception of authenticity.

Design/methodology/approach

Using the theory of cross-sensory compensation, through 4 experiments, this study examines the impact of social interaction and cross-sensory strategies on the relationship between virtual reality (VR) and improving customers' perception of authenticity and customer experience.

Findings

Through experimental research, this paper finds that (1) VR immersion has a significant positive impact on perception of authenticity, which in turn acts on customers' virtual tourism experience. (2) In addition, social interaction strengthens the relationship between VR immersion and customers' perception of authenticity. (3) The cross-sensory compensation has a positive effect on VR immersion to enhance customers' perception of authenticity.

Originality/value

The research conclusion provides a direction for further discussion on how to improve customers' perception of authenticity and provides theoretical guidance and reference for the virtual tourism industry.

Details

Asia Pacific Journal of Marketing and Logistics, vol. 36 no. 1
Type: Research Article
ISSN: 1355-5855

Keywords

Article
Publication date: 18 September 2023

Yong Qin and Haidong Yu

This paper aims to provide a better understanding of the challenges and potential solutions in Visual Simultaneous Localization and Mapping (SLAM), laying the foundation for its…

Abstract

Purpose

This paper aims to provide a better understanding of the challenges and potential solutions in Visual Simultaneous Localization and Mapping (SLAM), laying the foundation for its applications in autonomous navigation, intelligent driving and other related domains.

Design/methodology/approach

In analyzing the latest research, the review presents representative achievements, including methods to enhance efficiency, robustness and accuracy. Additionally, the review provides insights into the future development direction of Visual SLAM, emphasizing the importance of improving system robustness when dealing with dynamic environments. The research methodology of this review involves a literature review and data set analysis, enabling a comprehensive understanding of the current status and prospects in the field of Visual SLAM.

Findings

This review aims to comprehensively evaluate the latest advances and challenges in the field of Visual SLAM. By collecting and analyzing relevant research papers and classic data sets, it reveals the current issues faced by Visual SLAM in complex environments and proposes potential solutions. The review begins by introducing the fundamental principles and application areas of Visual SLAM, followed by an in-depth discussion of the challenges encountered when dealing with dynamic objects and complex environments. To enhance the performance of SLAM algorithms, researchers have made progress by integrating different sensor modalities, improving feature extraction and incorporating deep learning techniques, driving advancements in the field.

Originality/value

To the best of the authors’ knowledge, the originality of this review lies in its in-depth analysis of current research hotspots and predictions for future development, providing valuable references for researchers in this field.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 15 December 2022

Jiaxiang Hu, Xiaojun Shi, Chunyun Ma, Xin Yao and Yingxin Wang

The purpose of this paper is to propose a multi-feature, multi-metric and multi-loop tightly coupled LiDAR-visual-inertial odometry, M3LVI, for high-accuracy and robust state…

Abstract

Purpose

The purpose of this paper is to propose a multi-feature, multi-metric and multi-loop tightly coupled LiDAR-visual-inertial odometry, M3LVI, for high-accuracy and robust state estimation and mapping.

Design/methodology/approach

M3LVI is built atop a factor graph and composed of two subsystems, a LiDAR-inertial system (LIS) and a visual-inertial system (VIS). LIS implements multi-feature extraction on point cloud, and then multi-metric transformation estimation is implemented to realize LiDAR odometry. LiDAR-enhanced images and IMU pre-integration have been used in VIS to realize visual odometry, providing a reliable initial guess for LIS matching module. Location recognition is performed by a dual loop module combined with Bag of Words and LiDAR-Iris to correct accumulated drift. M³LVI also functions properly when one of the subsystems failed, which greatly increases the robustness in degraded environments.

Findings

Quantitative experiments were conducted on the KITTI data set and the campus data set to evaluate the M3LVI. The experimental results show the algorithm has higher pose estimation accuracy than existing methods.

Practical implications

The proposed method can greatly improve the positioning and mapping accuracy of AGV, and has an important impact on AGV material distribution, which is one of the most important applications of industrial robots.

Originality/value

M3LVI divides the original point cloud into six types, and uses multi-metric transformation estimation to estimate the state of robot and adopts factor graph optimization model to optimize the state estimation, which improves the accuracy of pose estimation. When one subsystem fails, the other system can complete the positioning work independently, which greatly increases the robustness in degraded environments.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 5 October 2022

H.P.M.N.L.B. Moragane, B.A.K.S. Perera, Asha Dulanjalie Palihakkara and Biyanka Ekanayake

Construction progress monitoring (CPM) is considered a difficult and tedious task in construction projects, which focuses on identifying discrepancies between the as-built product…

Abstract

Purpose

Construction progress monitoring (CPM) is considered a difficult and tedious task in construction projects, which focuses on identifying discrepancies between the as-built product and the as-planned design. Computer vision (CV) technology is applied to automate the CPM process. However, the synergy between the CV and CPM in literature and industry practice is lacking. This study aims to fulfil this research gap.

Design/methodology/approach

A Delphi qualitative approach was used in this study by conducting two interview rounds. The collected data was analysed using manual content analysis.

Findings

This study identified seven stages of CPM; data acquisition, information retrieval, verification, progress estimation and comparison, visualisation of the results and schedule updating. Factors such as higher accuracy in data, less labourious process, efficiency and near real-time access are some of the significant enablers in instigating CV for CPM. Major challenges identified were occlusions and lighting issues in the site images and lack of support from the management. The challenges can be easily overcome by implementing suitable strategies such as familiarisation of the workforce with CV technology and application of CV research for the construction industry to grow with the technology in line with other industries.

Originality/value

This study addresses the gap pertaining to the synergy between the CV in CPM literature and the industry practice. This research contributes by enabling the construction personnel to identify the shortcomings and the opportunities to apply automated technologies concerning each stage in the progress monitoring process.

Details

Construction Innovation , vol. 24 no. 2
Type: Research Article
ISSN: 1471-4175

Keywords

1 – 10 of 12