Search results

1 – 10 of 45
Article
Publication date: 16 September 2021

JiaRong Wang, Bo He and XiaoQiang Chen

This paper aims to obtain a symmetrical step-down topology with lower equivalent capacity and wider step-down range under the condition of the same output. Two new symmetrical…

51

Abstract

Purpose

This paper aims to obtain a symmetrical step-down topology with lower equivalent capacity and wider step-down range under the condition of the same output. Two new symmetrical step-down topologies of star-connected autotransformers are proposed in this paper. Taking the equivalent capacity as the main parameter, the obtained topologies are modeled and analyzed in detail.

Design/methodology/approach

This paper adopts the research methods of design, modeling, analysis and simulation verification. First, the star-connected autotransformer is redesigned according to the design objective of symmetrical step-down topology. In addition, the mathematical model of two topologies is established and a detailed theoretical analysis is carried out. Finally, the theoretical results are verified by simulation.

Findings

Two symmetrical star-connected autotransformer step-down topologies are designed, the winding configurations of the corresponding topology are presented, the step-down ranges of these three topologies are calculated and the influence of step-down ratio on the equivalent capacity of autotransformer are analyzed. Through analysis, the target step-down topologies are obtained when the step-down ratio is [1.1, 5.4] and [1.1, 1.9] respectively.

Research limitations/implications

Because the selected research object is only a star-connected autotransformer, the research results may lack generality. Therefore, researchers are encouraged to further study the topologies of other autotransformers.

Practical implications

This paper includes the implications of the step-down ratio on the equivalent capacity of autotransformers and the configuration of transformer windings.

Originality/value

The topologies designed in this paper enable star-connected autotransformer in the 12-pulse rectifier to be applied in step-down circumstances rather than situations of harmonic reduction only. At the same time, this paper provides a way that can be used to redesign the autotransformer in other multi-pulse rectifier systems, so that those transformers can be used in voltage regulation.

Article
Publication date: 2 September 2019

JiaRong Wang and XiaoQiang Chen

This paper aims to obtain a symmetrical step-down topology with lower equivalent capacity and wider step-down range under the condition of the same output. Three new symmetrical…

Abstract

Purpose

This paper aims to obtain a symmetrical step-down topology with lower equivalent capacity and wider step-down range under the condition of the same output. Three new symmetrical step-down topologies of zigzag autotransformer are proposed in this paper. Taking the equivalent capacity as the main parameter, the obtained topologies are modeled and analyzed in detail.

Design/methodology/approach

This paper adopts the research methods of design, modeling, analysis and simulation verification. First, the zigzag autotransformer is redesigned according to the design objective of symmetrical step-down topology. Second, the mathematical model of the designed topology is established, and the detailed theoretical analysis is carried out. Finally, the theoretical results are verified by simulation.

Findings

Three symmetrical zigzag autotransformer step-down topologies are designed, the winding configurations of the corresponding topology are presented, the step-down ranges of these three topologies are calculated and the influence of step-down ratio on equivalent capacity of autotransformer is analyzed. Through analysis, the target step-down topologies are obtained when the step-down ratio is [0.969, 1.414] and [1.414, 8].

Research limitations/implications

Because the selected research object is only zigzag autotransformer, the research results may lack generality. Therefore, researchers are encouraged to further study topologies of other autotransformers.

Practical implications

This paper includes the implications of step-down ratio on the equivalent capacity of autotransformer and the configuration of transformer windings.

Originality/value

The topologies designed in this paper enable zigzag autotransformer to be applied in step-down circumstances.

Article
Publication date: 11 May 2010

John Lau, Ricky Lee, Matthew Yuen and Philip Chan

The purpose of this paper is to propose new 3D light emitting diodes (LED) and integrated circuits (IC) integration packages.

1337

Abstract

Purpose

The purpose of this paper is to propose new 3D light emitting diodes (LED) and integrated circuits (IC) integration packages.

Design/methodology/approach

These packages consist of the multi‐LEDs and active IC chip such as the application specific IC, LED driver, processor, memory, radio frequency, sensor, or power controller in a 3D manner. The assembly processes of these packages are also presented and discussed.

Findings

The advantages of these 3D integration packages are found to be: better performance, lower cost, less footprint, lighter package, and smaller form factor.

Originality/value

A thermal management system for 3D IC and LEDs integration packages is proposed.

Details

Microelectronics International, vol. 27 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 January 2006

Zbigniew Fedyczak, Leszek Frąckowiak and Maciej Jankowski

Aims to focus on steady state and transient state analysis of basic properties of new solution for a single‐phase serial AC voltage controller. Furthermore, simulation and…

Abstract

Purpose

Aims to focus on steady state and transient state analysis of basic properties of new solution for a single‐phase serial AC voltage controller. Furthermore, simulation and experimental test results of 3 kVA models are provided to confirm and verify the theoretical approach.

Design/methodology/approach

Presents a converter with auxiliary transformer and bipolar PWM AC matrix‐reactance chopper (MRC), based on Ćuk B2 topology. The MRC has the possibility of bipolar AC voltage conversion with magnitude of voltage transformation function greater than 1. The peak voltage detection method in the control circuit is applied to fast control of the load voltage changes. The steady state and transient state theoretical analysis based on averaged models of the presented controller is used. There is a four‐terminal description of the basic properties in the presented approach.

Findings

In the proposed solution only half the number of switches compared with the case of full bridge matrix chopper solution is used. The nominal load voltage can be obtained even for 50 per cent step‐down of the supply voltage.

Originality/value

Presents new topology and properties of single‐phase serial AC voltage controller.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 25 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 8 March 2021

Rohollah Abdollahi

The purpose of this paper is to provide a T autotransformer based 12-pulse rectifier with passive harmonic reduction in more electric aircraft applications. The T autotransformer…

Abstract

Purpose

The purpose of this paper is to provide a T autotransformer based 12-pulse rectifier with passive harmonic reduction in more electric aircraft applications. The T autotransformer uses only two main windings which result in volume, space, size, weight and cost savings. Also, the proposed unconventional inter-phase transformer (UIPT) with a lower kVA rating (about 2.6% of the load power) compared to the conventional inter-phase transformer results in a more harmonic reduction.

Design/methodology/approach

To increase rating and reduce the cost and complexity of a multi-pulse rectifier, it is well known that the pulse number must be increased. In some practical cases, a 12-pulse rectifier (12PR) is suggested as a good solution considering its simple structure and low weight. But the 12PR cannot technically meet the standards of harmonic distortion requirements for some industrial applications, and therefore, they must be used with output filters. In this paper, a 12PR is suggested, which consists of a T autotransformer 12PR and a passive harmonic reduction (PHR) based on the UIPT at direct current (DC) link.

Findings

To show the advantage of this new combination over other solutions, simulation results are used, and then, a prototype is implemented to evaluate and verify the simulation results. The simulation and experimental test results show that the input current total harmonic distortion (THD) of the suggested 12PR with a PHR based on UIPT is less than 5%, which meets the IEEE 519 requirements. Also, it is shown that in comparison with other solutions, it is cost effective, and at the same time, its power factor is near unity, and its rating is 29.92% of the load rating. Therefore, it is obvious that the proposed rectifier is a practical solution for more electric aircrafts.

Originality/value

The contributions of this paper are summarized as follows. The suggested design uses a retrofit T autotransformer, which meets all technical constraints, and in comparison, with other options, has less rating, weight, volume and cost. In the suggested rectifier, a PHR based on UIPT at its dc link of 12PR is used, which has good technical capabilities and lower ratings. In the PHR based on UIPT, an IPT is used, which has an additional secondary winding and four diodes. This solution leads to a reduction in input current THD and conduction losses of diodes. In full load conditions, the input line current THD and power factor are 4% and 0.99, respectively. The THD is less than 5%, which satisfies IEEE-519 and DO-160G requirements.

Article
Publication date: 23 March 2023

Aditi Sushil Karvekar and Prasad Joshi

The purpose of this paper is to implement a closed loop regulated bidirectional DC to DC converter for an application in the electric power system of more electric aircraft. To…

Abstract

Purpose

The purpose of this paper is to implement a closed loop regulated bidirectional DC to DC converter for an application in the electric power system of more electric aircraft. To provide a consistent power supply to all of the electronic loads in an aircraft at the desired voltage level, good efficiency and desired transient and steady-state response, a smart and affordable DC to DC converter architecture in closed loop mode is being designed and implemented.

Design/methodology/approach

The aircraft electric power system (EPS) uses a bidirectional half-bridge DC to DC converter to facilitate the electric power flow from the primary power source – an AC generator installed on the aircraft engine’s shaft – to the load as well as from the secondary power source – a lithium ion battery – to the load. Rechargeable lithium ion batteries are used because they allow the primary power source to continue recharging them whenever the aircraft engine is running smoothly and because, in the event that the aircraft engine becomes overloaded during takeoff or turbulence, the charged secondary power source can step in and supply the load.

Findings

A novel nonsingular terminal sliding mode voltage controller based on exponential reaching law is used to keep the load voltage constant under any of the aforementioned circumstances, and its performance is contrasted with a tuned PI controller on the basis of their respective transient and steady-state responses. The former gives a faster and better transient and steady-state response as compared to the latter.

Originality/value

This research gives a novel control scheme for incorporating an auxiliary power source, i.e. rechargeable battery, in more electric aircraft EPS. The battery is so implemented that it can get regeneratively charged when primary power supply is capable of handling an additional load, i.e. the battery. The charging and discharging of the battery is carried out in closed loop mode to ensure constant battery terminal voltage, constant battery current and constant load voltage as per the requirement. A novel sliding mode controller is used to improve transient and steady-state response of the system.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 4 January 2011

Dmitri Vinnikov and Juhan Laugis

The paper presents the findings of an R&D project connected to the development of 50 kW auxiliary power supply for the high‐voltage DC‐fed commuter trains. The aim was to…

Abstract

Purpose

The paper presents the findings of an R&D project connected to the development of 50 kW auxiliary power supply for the high‐voltage DC‐fed commuter trains. The aim was to introduce a new generation power converter utilizing high‐voltage insulated gate bibolar transistor (IGBT) modules, which can outpace the predecessors in terms of efficiency and power density, i.e. to provide more power for smaller volumetric space.

Design/methodology/approach

For development of the proposed converter, mathematical analysis and computer simulations were used. The software intended for simulations is Ansoft Simplorer, which is a mixed‐technology simulator for electrical, electromechanical, power electronic systems and drive applications. For the verification of theoretical results the full‐scale laboratory prototype of the proposed converter was developed and tested.

Findings

Thanks to increased switching frequency and current‐doubler rectifier (CDR) implemented in the proposed converter, the power dissipation of the isolation transformer was reduced by 30 percent as compared to earlier designs. Moreover, the 27 and 24 percent reductions in rectifier and inductor losses, respectively, led to approximately 1 percent efficiency rise of the proposed converter in comparison with its predecessors. Also, the proposed three‐level topology outpaces the two‐level one by more than 20 percent in terms of power density.

Practical implications

The proposed converter topology is aimed for the high‐voltage DC trains. With small modifications it also can be used in trams, trolleybuses as well as in some industrial applications.

Originality/value

The paper presents the novel DC/DC converter topology with 3.3 kV IGBT‐based three‐level neutral point clamped inverter, high‐frequency isolation transformer and the CDR.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 December 2021

Suresh Krishnan, Pothuraju Pandi and Subbarao Mopidevi

This paper aims to propose a bidirectional hidden converter (BHC)-based three-phase DC–AC conversion for energy storage application. BHC is the new concept to vary an energy…

Abstract

Purpose

This paper aims to propose a bidirectional hidden converter (BHC)-based three-phase DC–AC conversion for energy storage application. BHC is the new concept to vary an energy storage device voltage into wide range. Hidden converter power loss and power rating are reduced by using zero-sequence injection-based carrier-based pulse-width modulation (CBPWM) strategy.

Design/methodology/approach

By using this control strategy, a BHC processes only little amount of power during double-stage conversion, mostly during direct or single-stage conversion of the three-phase three-port converter (TPTPC) only processing the maximum power.

Findings

TPTPC consists of two sets of positive group switches for inversion process, one set of switches is regular inverter switches called vertical positive group switches, and the second set is anti-series switches, which are horizontally connected for direct or single-stage conversion.

Originality/value

Characteristics, principles and implementations of proposed DC–AC 3Ø conversion system and its PWM strategy are analyzed. Through experimental outputs, the effectiveness and viability of the proposed solutions are validated.

Article
Publication date: 9 June 2022

Rajini V. and Margaret Amutha W.

The purpose of this paper is to carry out a detailed analysis of two port converter fed by Solar and wind sources during different operational modes by small signal modelling. The…

Abstract

Purpose

The purpose of this paper is to carry out a detailed analysis of two port converter fed by Solar and wind sources during different operational modes by small signal modelling. The converter is fully characterized and simulated using Matlab/Simulink. The voltage and current waveforms along with their corresponding expressions describing the converter operation are presented in detail. Then the DC-averaged equivalent topology is derived using circuit averaging technique. A complete derivation of the power stage transfer functions relevant to the capacitor voltage loop, such as capacitor voltage to solar voltage and inductor current to wind input voltage is obtained.

Design/methodology/approach

Stability analysis is used to analyze the small deviations around the steady-state operating point which helps in modeling the closed loop converter parameters. This paper presents the analysis, modeling and control of two port Cuk-buck converter topology.

Findings

Based on the results, a control strategy is designed to manage the energy flow within the system. A lab-level prototype for Cuk-buck converter with PWM controller is implemented and tested under various input conditions to study the performance of the converter during seasonal changes. The simulation and experimental results showed that effective operation and control strategy of the hybrid power supply system managed to be achieved alongside its feasible outputs.

Practical implications

This analysis can be extended to all power electronic converters and will be useful for the design of controllers.

Social implications

An appropriate control design plays a key role in enhancing the overall performance of the system. Hence, this paper is intended to present in detail the small signal modeling of the Cuk-buck converter along with the control design for all the switching modes.

Originality/value

Though this type of converter topology has been discussed widely in literature, very scarce literature is available related to modeling and control design of the converter. A state-space averaging model of the converter followed by a type-II compensator design is described, and prototype design and experimental results are also presented.

Article
Publication date: 28 July 2020

Eralp Sener and Gurhan Ertasgin

This paper aims to present an inverter with a current-source input for 400 Hz avionic systems to have a system which removes DC-link capacitors and presents a high efficiency.

Abstract

Purpose

This paper aims to present an inverter with a current-source input for 400 Hz avionic systems to have a system which removes DC-link capacitors and presents a high efficiency.

Design/methodology/approach

A battery-powered DC link inductor generates a constant-current source. A single high-frequency switch is used to provide a sinusoidally modulated current before the inverter. The output of the switch is “unfolded” by a thyristor-based H-bridge inverter to generate an AC output current. The system uses a CL low-pass filter to obtain a 400 Hz pure sine wave by removing pulse width modulation components.

Findings

Simulations and Typhoon HIL real-time experiments were performed with closed-loop control to validate the proposed inverter concept while meeting the critical standards of MIL-STD-704F.

Originality/value

This current source inverter topology is suitable for avionic systems that require 400 Hz output frequency. The topology uses small DC-link inductor and eliminates bulky capacitor which determines the inverter lifetime.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 45