Search results

1 – 10 of 31
Article
Publication date: 30 August 2024

Chandrapushpam Thangaraj, Sivasankaran Sivanandam and Bhuvaneswari Marimuthu

This paper aims to examine the Dufour and Soret combined effects on the study of two-dimensional squeezed flow of copper water nanofluid between parallel plates along with applied…

Abstract

Purpose

This paper aims to examine the Dufour and Soret combined effects on the study of two-dimensional squeezed flow of copper water nanofluid between parallel plates along with applied (external) magnetic field. Impact of higher order chemical reaction is also considered.

Design/methodology/approach

The nonlinear partial differential equations (PDEs) are changed into system of ordinary differential equations (ODEs) by employing suitable similarity transformations. These transformed ODEs are then solved by means of a semianalytical method called differential transform method (DTM). Effects of several changing physical parameters on fluid flow, temperature and concentration have been deliberated through graphs.

Findings

It is observed that Dufour and Soret numbers are directly related to temperature profile and a reverse trend was observed in the concentration profile. Temperature enhancement is perceived for the enhanced Dufour number. Enhancement in Dufour number shows a direct association with Sh and Nu for all values of squeezing parameter.

Practical implications

The combined Dufour and Soret effects are used in separation of isotopes in mixture of gases, oil reservoirs and binary alloys solidification. The squeeze nanoliquid flow can be used in the field of composite material joining, rheological testing and welding engineering.

Social implications

This study is mainly useful for geosciences and chemical engineering.

Originality/value

The uniqueness in this research is the study of the impact of cross diffusion on chemically reacting squeezed nanoliquid flow with the chemical reaction order more than one in the presence of applied magnetic force using a semianalytical procedure, named DTM.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 23 September 2024

Binbin Su, Xianghe Zou, Zhaoxiang Wang and Lirong Huang

Inspired by the high-friction performance of the soft toe pads of tree frogs, this study aims to investigate the effect of elastic deformation on the lubrication properties of…

Abstract

Purpose

Inspired by the high-friction performance of the soft toe pads of tree frogs, this study aims to investigate the effect of elastic deformation on the lubrication properties of squeezing films inside soft tribocontacts with microstructured surface under wet conditions.

Design/methodology/approach

A one-dimensional hydrodynamic extrusion model was used to study the film lubrication characteristics of conformal contact. The lubrication characteristics of the extruded film, including load-carrying capacity, liquid flow and surface elastic deformation, were obtained through the simultaneously iterative solution of the fluid-governing and deformation equations.

Findings

The results show that the hydrodynamic pressure is approximating parabolically and symmetrically distributed in the contact area, and the peak value appears in the center of the extrusion surface. Elastic deformation increases the thickness of the liquid film, weakens the bearing capacity and homogenizes the liquid flow rate of inside soft friction contact. The magnitude of this effect greatly increases as the initial liquid film thickness decreases. Moreover, the elastic deformation directly affects the average film thickness of the extrusion contact. Narrow and shallow microchannels are found to result in a more prominent elastic deformation on the microstructured soft surface.

Originality/value

These results present a design for soft tribocontacts suitable for submerged or wet environments involving high friction, such as wiper blades, in situ flexible electrons and underwater robots.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-02-2024-0049/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 July 2024

Sivasankaran Sivanandam, Turki J. Alqurashi and Hashim M. Alshehri

This study aims to investigate numerically the impact of the three-dimensional convective nanoliquid flow on a rotating frame embedded in the non-Darcy porous medium in the…

Abstract

Purpose

This study aims to investigate numerically the impact of the three-dimensional convective nanoliquid flow on a rotating frame embedded in the non-Darcy porous medium in the presence of activation energy. The cross-diffusion effects, i.e. Soret and Dufour effects, and heat generation are included in the study. The convective heating condition is applied on the bounding surface.

Design/methodology/approach

The control model consisted of a system of partial differential equations (PDE) with boundary constraints. Using suitable similarity transformation, the PDE transformed into an ordinary differential equation and solved numerically by the Runge–Kutta–Fehlberg method. The obtained results of velocity, temperature and solute concentration characteristics plotted to show the impact of the pertinent parameters. The heat and mass transfer rate and skin friction are also calculated.

Findings

It is found that both Biot numbers enhance the heat and mass distribution inside the boundary layer region. The temperature increases by increasing the Dufour number, while concentration decreases by increasing the Dufour number. The heat transfer is increased up to 8.1% in the presence of activation energy parameter (E). But, mass transfer rate declines up to 16.6% in the presence of E.

Practical implications

The applications of combined Dufour and Soret effects are in separation of isotopes in mixture of gases, oil reservoirs and binary alloys solidification. The nanofluid with porous medium can be used in chemical engineering, heat exchangers and nuclear reactor.

Social implications

This study is mainly useful for thermal sciences and chemical engineering.

Originality/value

The uniqueness in this research is the study of the impact of activation energy and cross-diffusion on rotating nanoliquid flow with heat generation and convective heating condition. The obtained results are unique and valuable, and it can be used in various fields of science and technology.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 July 2024

Abdulaziz Alsenafi, Fares Alazemi and M. Nawaz

To improve the thermal performance of base fluid, nanoparticles of three types are dispersed in the base fluid. A novel theory of non-Fourier heat transfer is used for design and…

Abstract

Purpose

To improve the thermal performance of base fluid, nanoparticles of three types are dispersed in the base fluid. A novel theory of non-Fourier heat transfer is used for design and development of models. The thermal performance of sample fluids is compared to determine which types of combination of nanoparticles are the best for an optimized enhancement in thermal performance of fluids. This article aims to: (i) investigate the impact of nanoparticles on thermal performance; and (ii) implement the Galerkin finite element method (GFEM) to thermal problems.

Design/methodology/approach

The mathematical models are developed using novel non-Fourier heat flux theory, conservation laws of computational fluid dynamics (CFD) and no-slip thermal boundary conditions. The models are approximated using thermal boundary layer approximations, and transformed models are solved numerically using GFEM. A grid-sensitivity test is performed. The accuracy, correction and stability of solutions is ensured. The numerical method adopted for the calculations is validated with published data. Quantities of engineering interest, i.e. wall shear stress, wall mass flow rate and wall heat flux, are calculated and examined versus emerging rheological parameters and thermal relaxation time.

Findings

The thermal relaxation time measures the ability of a fluid to restore its original thermal state, called thermal equilibrium and therefore, simulations have shown that the thermal relaxation time associated with a mono nanofluid has the most substantial effect on the temperature of fluid, whereas a ternary nanofluid has the smallest thermal relaxation time. A ternary nanofluid has a wider thermal boundary thickness in comparison with base and di- and mono nanofluids. The wall heat flux (in the case of the ternary nanofluids) has the most significant value compared with the wall shear stresses for the mono and hybrid nanofluids. The wall heat and mass fluxes have the highest values for the case of non-Fourier heat and mass diffusion compared to the case of Fourier heat and mass transfer.

Originality/value

An extensive literature review reveals that no study has considered thermal and concentration memory effects on transport mechanisms in fluids of cross-rheological liquid using novel theory of heat and mass [presented by Cattaneo (Cattaneo, 1958) and Christov (Christov, 2009)] so far. Moreover, the finite element method for coupled and nonlinear CFD problems has not been implemented so far. To the best of the authors’ knowledge for the first time, the dynamics of wall heat flow rate and mass flow rate under simultaneous effects of thermal and solute relaxation times, Ohmic dissipation and first-order chemical reactions are studied.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 August 2024

Guocheng Lv, Dawei Jia, Changyou Li, Chunyu Zhao, Xiulu Zhang, Feng Yan, Hongzhuang Zhang and Bing Li

This study aims to investigate the effect of countersunk rivet head dimensions on the fatigue performance of the riveted specimens of 2024-T3 alloy.

Abstract

Purpose

This study aims to investigate the effect of countersunk rivet head dimensions on the fatigue performance of the riveted specimens of 2024-T3 alloy.

Design/methodology/approach

The relationship between rivet head dimensions and fatigue behavior was investigated by finite element method and fatigue test. The fatigue fracture of the specimens was analyzed by scanning electron microscopy.

Findings

A change of the rivet head dimensions will cause a change in the stress concentration and residual normal stress, the stress concentration near the rivet hole causes the fatigue crack source to be located on the straight section of the countersunk rivet hole and the residual normal stress can effectively restrain the initiation and expansion of fatigue cracks. The fatigue cycle will cause the rivet holes to produce different degrees of surface wear.

Originality/value

The fatigue life of the specimens with the height of the rivet head of 2.28 mm and 2.00 mm are similar, but the specimens with the height of the rivet head of 1.72 mm were far higher than the other specimens.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 30 August 2024

Mamta Dhanda, Sunaina Dhanda and Bhawna Choudhary

The purpose of this paper is to study the influence of inflated energy prices on the capital structure of Indian manufacturing corporations and to investigate whether the capital…

Abstract

Purpose

The purpose of this paper is to study the influence of inflated energy prices on the capital structure of Indian manufacturing corporations and to investigate whether the capital structure of Indian firms is driven by demand shocks or supply shocks during the study period.

Design/methodology/approach

After conducting a thorough review of the capital structure and inflation-based research studies, panel data-based regression model and correlation matrix have been used as statistical tools for Indian manufacturing sector available with the Centre for Monitoring Indian Economy Prowess database.

Findings

The results suggest that variables like the presence of inflated energy prices had adversely influenced the capital structure of Indian corporations. Not only this, the study also highlights that factors pertaining to the demand shock had induced Indian corporations to have higher debt levels in the capital structure.

Practical implications

This study has laid some ground work to explore the influence of inflation on capital structure of Indian firms upon which a more detailed evaluation could be based.

Originality/value

To the best of the authors’ knowledge, this study is the first that explores the influence of inflated energy prices on the capital structure of manufacturing firms in India by using the most recent data.

Details

International Journal of Law and Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1754-243X

Keywords

Article
Publication date: 16 July 2024

Fehid Ishtiaq, R. Ellahi, M.M. Bhatti and Sadiq M. Sait

Cilia serves numerous biological functions in the human body. Malfunctioning of nonmotile or motile cilia will have different kinds of consequences for human health. More…

Abstract

Purpose

Cilia serves numerous biological functions in the human body. Malfunctioning of nonmotile or motile cilia will have different kinds of consequences for human health. More specifically, the directed and rhythmic beat of motile cilia facilitates the unidirectional flow of fluids that are crucial in both homeostasis and the development of ciliated tissues. In cilia-dependent hydrodynamic flows, tapering geometries look a lot like the structure of biological pathways and vessels, like airways and lymphatic vessels. In this paper, the Carreau fluid model through the cilia-assisted tapered channel (asymmetric) under the influence of induced magnetic field and convective heat transfer is investigated.

Design/methodology/approach

Lubrication theory is a key player in the mathematical formulation of momentum, magnetic field and energy equations. The formulated nonlinear and coupled differential equations are solved with the aid of the homotopy perturbation method (HPM). The graphical results are illustrated with the help of the computational software “Mathematica.”

Findings

The impact of diverse emerging physical parameters on velocity, induced magnetic field, pressure rise, current density and temperature profiles is presented graphically. It is observed that the cilia length parameter supported the velocity and current density profiles, while the Hartman number and Weissenberg number were opposed. A promising effect of emerging parameters on streamlines is also perceived.

Originality/value

The study provides novel aspects of cilia-driven induced magnetohydrodynamics flow of Carreau fluid under the influence of induced magnetic field and convective heat transfer through the asymmetric tapered channel.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 July 2024

Ugur Mecid Dilberoglu, Ulas Yaman and Melik Dolen

This study aims to thoroughly examine the milling process applied to fused filament fabrication (FFF) parts. The primary objective is to identify the key variables in creating…

Abstract

Purpose

This study aims to thoroughly examine the milling process applied to fused filament fabrication (FFF) parts. The primary objective is to identify the key variables in creating smooth surfaces on FFF specimens and establish trends about specific parameters.

Design/methodology/approach

In this study, PLA and ABS samples fabricated by FFF are subjected to side milling in several experiments. Achievable surface quality is studied in relation to material properties, milling parameters, tooling and macrostructure. The surface finish is quantified using profile measurements of the processed surfaces. The study classifies the created chips into categories that can be used as criteria for the anticipated quality. Spectral analysis is used to examine the various surface formation modes. Thermal monitoring is used to track chip formation and surface temperature changes during the milling process.

Findings

This study reveals that effective heat dissipation through proper chip formation is vital for maintaining high surface quality. Recommended methodology demands using a tool with a substantial flute volume, using high positive rake and clearance angles and optimizing the feed-per-tooth and cutting speed. Disregarding these guidelines may cause the surface temperature to surpass the material’s glass transition, resulting in inferior quality characterized by viscous folding. For FFF thermoplastics, optimal milling can bring the average surface roughness down to the micron level.

Originality/value

This research contributes to the field by providing valuable guidance for achieving superior results in milling FFF parts. This study includes a concise summary of the theoretically relevant insights, presents verification of the key factors by qualitative analysis and offers optimal milling parameters for 3D-printed thermoplastics based on systematic experiments.

Details

Rapid Prototyping Journal, vol. 30 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 24 September 2024

Penghai Deng, Quansheng Liu and Haifeng Lu

The purpose of this paper is to propose a new combined finite-discrete element method (FDEM) to analyze the mechanical properties, failure behavior and slope stability of soil…

Abstract

Purpose

The purpose of this paper is to propose a new combined finite-discrete element method (FDEM) to analyze the mechanical properties, failure behavior and slope stability of soil rock mixtures (SRM), in which the rocks within the SRM model have shape randomness, size randomness and spatial distribution randomness.

Design/methodology/approach

Based on the modeling method of heterogeneous rocks, the SRM numerical model can be built and by adjusting the boundary between soil and rock, an SRM numerical model with any rock content can be obtained. The reliability and robustness of the new modeling method can be verified by uniaxial compression simulation. In addition, this paper investigates the effects of rock topology, rock content, slope height and slope inclination on the stability of SRM slopes.

Findings

Investigations of the influences of rock content, slope height and slope inclination of SRM slopes showed that the slope height had little effect on the failure mode. The influences of rock content and slope inclination on the slope failure mode were significant. With increasing rock content and slope dip angle, SRM slopes gradually transitioned from a single shear failure mode to a multi-shear fracture failure mode, and shear fractures showed irregular and bifurcated characteristics in which the cut-off values of rock content and slope inclination were 20% and 80°, respectively.

Originality/value

This paper proposed a new modeling method for SRMs based on FDEM, with rocks having random shapes, sizes and spatial distributions.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 May 2024

Yinghong Li, Wei Tan, Wenjie Pei and Guorui Zhu

The purpose of this paper is to investigate the effect of NaCl solution with different concentrations on impact-sliding fretting corrosion behavior of Inconel 690TT steam…

Abstract

Purpose

The purpose of this paper is to investigate the effect of NaCl solution with different concentrations on impact-sliding fretting corrosion behavior of Inconel 690TT steam generator heat transfer tubes.

Design/methodology/approach

The optical 3D profiler was used to measure the wear profile and calculated the wear volume. Corrosion behavior was studied using open circuit potential monitoring and potentiodynamic polarization testing. The morphologies and elemental distributions of wear scars were analyzed using scanning electron microscopy and energy-dispersive spectroscopy. The synergism of wear and corrosion was analyzed according to the ASTM G119 standard.

Findings

The corrosion tendency reflected by OCP and the corrosion current calculated by Tafel both increased with the increase of NaCl concentration. The total volume loss of the material increased with concentration, and it was known from the synergism that the volume loss caused by corrosion-enhanced wear accounted for the largest proportion, while the wear-enhanced corrosion also made a greater contribution to volume loss than tangential fretting corrosion. Through the analysis of the material morphologies and synergism of wear and corrosion, the damage mechanism was elucidated.

Originality/value

The research findings can provide reference for impact-sliding fretting corrosion behavior of Inconel 690TT heat transfer tubes in NaCl solution with different concentrations.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 31