Search results

1 – 10 of 220
Article
Publication date: 1 December 2002

Anthony Wachs, Jean‐Robert Clermont and Ahmad Khalifeh

A finite volume method is applied to numerical simulations of steady isothermal and non‐isothermal flows of fluids obeying different constitutive equations: Newtonian, purely…

Abstract

A finite volume method is applied to numerical simulations of steady isothermal and non‐isothermal flows of fluids obeying different constitutive equations: Newtonian, purely viscous with shear‐thinning properties (Carreau law) and viscoelastic Upper Convected Maxwell differential model whose temperature dependence is described by a William‐Landel‐Ferry equation. The flow situations concern various abrupt axisymmetric contractions from 2:1 to 16:1. Such flow geometries are involved in polymer processing operations. The governing equations are discretized on a staggered grid with an upwind scheme for the convective‐type terms and are solved by a decoupled algorithm, stabilized by a pseudo‐transient stress term and an elastic viscous stress splitting technique. The numerical results highlight the influence of temperature on the flow situations, and also the complex behaviour of the materials under non‐isothermal conditions.

Details

Engineering Computations, vol. 19 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 March 2023

Saeed Ghorbani, Amin Emamian, Amin Amiri Delouei, R. Ellahi, Sadiq M. Sait and Mohamed Bechir Ben Hamida

The purpose of this study is to investigate heat transfer and electrokinetic non-Newtonian flow in a rectangular microchannel in the developed and transient states.

Abstract

Purpose

The purpose of this study is to investigate heat transfer and electrokinetic non-Newtonian flow in a rectangular microchannel in the developed and transient states.

Design/methodology/approach

The Carreau–Yasuda model was considered to capture the non-Newtonian behavior of the fluid. The dimensionless forms of governing equations, including the continuity equation for the Carreau–Yasuda fluid, are numerically solved by considering the volumetric force term of electric current (DC).

Findings

The impact of pertinent parameters such as electrokinetic diameter (R), Brinkman number and Peclet number is examined graphically. It is observed that for increasing R, the bulk velocity decreases. The velocity of the bulk fluid reaches from the minimum to the maximum state across the microchannel over time. At the electrokinetic diameter of 400, the maximum velocity was obtained. Temperature graphs are plotted with changes in the various Brinkman number (0.1 < Br < 0.7) at different times, and local Nusselt are compared against changes in the Peclet number (0.1 < ℘e < 0.5). The results of this study show that by increasing the Brinkman number from 0.25 to 0.7, the temperature along the microchannel doubles. It was observed that increasing the Peclet number from 0.3 to 0.5 leads to 200% increment of the Nusselt number along the microchannel in some areas along the microchannel. The maximum temperature occurs at Brinkman number of 0.7 and the maximum value of the local Nusselt number is related to Peclet number 0.5. Over time in the transient mode, the Nusselt number also decreases along the microchannel. By the increasing of time, the temperature increases at given value of Brinkman, which is insignificant at Brinkman number of 0.1. The simulation results have been verified by Newtonian and non-Newtonian flows with adequate accuracy.

Originality/value

This study contributes to discovering the effects of transient flow of electroosmotic flow for non-Newtonian Carreau–Yasuda fluid and transient heat transfer through rectangular microchannel. To the authors’ knowledge, the said investigation is yet not available in existing literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 August 2018

Ramadevi B., Sugunamma V., Anantha Kumar K. and Ramana Reddy J.V.

The purpose of this paper is to focus on MHD unsteady flow of Carreau fluid over a variable thickness melting surface in the presence of chemical reaction and non-uniform heat…

Abstract

Purpose

The purpose of this paper is to focus on MHD unsteady flow of Carreau fluid over a variable thickness melting surface in the presence of chemical reaction and non-uniform heat sink/source.

Design/methodology/approach

The flow governing partial differential equations are transformed into ordinary ones with the help of similarity transformations. The set of ODEs are solved by a shooting technique together with the R.K.–Fehlberg method. Further, the graphs are depicted to scrutinize the velocity, concentration and temperature fields of the Carreau fluid flow. The numerical values of friction factor, heat and mass transfer rates are tabulated.

Findings

The results are presented for both Newtonian and non-Newtonian fluid flow cases. The authors conclude that the nature of three typical fields and the physical quantities are alike in both cases. An increase in melting parameter slows down the velocity field and enhances the temperature and concentration fields. But an opposite outcome is noticed with thermal relaxation parameter. Also the elevating values of thermal relaxation parameter/ wall thickness parameter/Prandtl number inflate the mass and heat transfer rates.

Originality/value

This is a new research article in the field of heat and mass transfer in fluid flows. Cattaneo–Christov heat flux model is used. The surface of the flow is assumed to be melting.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 19 December 2018

Vasu B. and Atul Kumar Ray

To achieve material-invariant formulation for heat transfer of Carreau nanofluid, the effect of Cattaneo–Christov heat flux is studied on a natural convective flow of Carreau

Abstract

Purpose

To achieve material-invariant formulation for heat transfer of Carreau nanofluid, the effect of Cattaneo–Christov heat flux is studied on a natural convective flow of Carreau nanofluid past a vertical plate with the periodic variations of surface temperature and the concentration of species. Buongiorno model is considered for nanofluid transport, which includes the relative slip mechanisms, Brownian motion and thermophoresis.

Design/methodology/approach

The governing equations are non-dimensionalized using suitable transformations, further reduced to non-similar form using stream function formulation and solved by local non-similarity method with homotopy analysis method. The numerical computations are validated and verified by comparing with earlier published results and are found to be in good agreement.

Findings

The effects of varying the physical parameters such as Prandtl number, Schmidt number, Weissenberg number, thermophoresis parameter, Brownian motion parameter and buoyancy ratio parameter on velocity, temperature and species concentration are discussed and presented through graphs. The results explored that the velocity of shear thinning fluid is raised by increasing the Weissenberg number, while contrary response is seen for the shear thickening fluid. It is also found that heat transfer in Cattaneo–Christov heat conduction model is less than that in Fourier’s heat conduction model. Furthermore, the temperature and thermal boundary layer thickness expand with the increase in thermophoresis and Brownian motion parameter, whereas nanoparticle volume fraction increases with increase in thermophoresis parameter, but reverse trend is observed with increase in Brownian motion parameter.

Originality/value

The present investigation is relatively original as very little research has been reported on Carreau nanofluids under the effect of Cattaneo–Christov heat flux model.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 September 2021

Saeed Ghorbani, Ali Jabari Moghadam, Amin Emamian, R. Ellahi and Sadiq M. Sait

In this paper aims to investigate the numerical simulation of the electroosmotic flow of the Carreau-Yasuda model in the rectangular microchannel. Electromagnetic current is…

Abstract

Purpose

In this paper aims to investigate the numerical simulation of the electroosmotic flow of the Carreau-Yasuda model in the rectangular microchannel. Electromagnetic current is generated by applying an effective electric field in the direction of the current.

Design/methodology/approach

The non-Newtonian model used is the five-constant Carreau-Yasuda model which the non-Newtonian properties of the fluid can be well modeled. Using the finite difference method, the potential values at all points in the domain are obtained. Then, the governing equations (momentum conservation) and the energy equation are segregated and solved using a finite difference method.

Findings

In this paper, the effect of various parameters such as Weisenberg number, electrokinetic diameter, exponential power number on the velocity field and Brinkman and Pecklet dimensionless numbers on temperature distribution are investigated. The results show that increasing the Weissenberg dimensionless number and exponential power and diameter parameters reduces the maximum velocity field in the microchannel.

Originality/value

To the best of the authors’ knowledge, this study is reported for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 September 2023

Shafia Rana, M. Nawaz and Sayer Obaid Alharbi

The purpose of this study is to analyze the transportation of heat and mass in three-dimensional (3D) shear rate-dependent viscous fluid. Thermal enhancement plays a significant…

130

Abstract

Purpose

The purpose of this study is to analyze the transportation of heat and mass in three-dimensional (3D) shear rate-dependent viscous fluid. Thermal enhancement plays a significant role in industrial and engineering applications. For this, the authors dispersed trihybrid nanoparticles into the fluid to enhance the working fluid’s thermal enhancement.

Design/methodology/approach

The finite element method is a numerical scheme and is powerful in achieving convergent and grid-independent solutions compared with other numerical techniques. This method was initially assigned to structural problems. However, it is equally successful for computational fluid dynamics problems.

Findings

Wall shear stress has shown an increasing behavior as the intensity of the magnetic field is increased. Simulations have predicted that Ohmic heat in the case of trihybrid nanofluid (MoS2–Al2O3–Cu/C2H6O2) has the greatest value in comparison with mono and hybrid nanofluids. The most significant influence of chemical reaction on the concentration in tri-nanofluid is noted. This observation is pointed out for both types of chemical reaction (destructive or generative) parameters.

Originality/value

Through a literature survey, the authors analyzed that no one has yet to work on a 3D magnetohydrodynamics Carreau–Yasuda trihybrid nanofluid over a stretched sheet for improving heat and mass transfer over hybrid nanofluids. Herein, molybdenum disulfide (MoS2), aluminum oxide (Al2O3) and copper (Cu) nanoparticles are mixed in ethylene glycol (C2H6O2) to study the thermal enhancement and mass transport of their corresponding resultant mono (Cu/C2H6O2), hybrid (Al2O3–Cu/C2H6O2) and trihybrid (MoS2–Al2O3–Cu/C2H6O2) nanofluids.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 October 2018

Tasawar Hayat, Javaria Akram, Hina Zahir and Ahmad Alsaedi

The purpose of this paper is to emphasize on the impact of endoscope in MHD peristaltic flow of Carreau fluid. Heat and mass transfer phenomena are comprised of Soret and Dufour…

Abstract

Purpose

The purpose of this paper is to emphasize on the impact of endoscope in MHD peristaltic flow of Carreau fluid. Heat and mass transfer phenomena are comprised of Soret and Dufour effects. Influences of mixed convection and viscous dissipation are also accounted. Wall properties and convective boundary conditions are used.

Design/methodology/approach

The Navier–Stokes and energy equations used the lubrication approach. The reduced system of equations is executed numerically. The graphical illustration of velocity, temperature, concentration and heat transfer coefficient for various emerging parameters is discussed.

Findings

The response of Weissenberg number and power law index is decaying toward velocity and temperature. Moreover impression of Soret and Dufour number on temperature is quite reverse to that of concentration.

Originality/value

The titled problem with the various considered effects has not been solved before, and it is of special importance in various industries. The problem is original.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 August 2021

Yu Bai, Qing Wang and Yan Zhang

This paper aims to examine the unsteady stagnation-point flow, heat and mass transfer of upper-convected Oldroyd-B nanofluid along a stretching sheet. The thermal conductivity is…

Abstract

Purpose

This paper aims to examine the unsteady stagnation-point flow, heat and mass transfer of upper-convected Oldroyd-B nanofluid along a stretching sheet. The thermal conductivity is taken in a temperature-dependent fashion. With the aid of Cattaneo–Christov double-diffusion theory, relaxation-retardation double-diffusion model is advanced, which considers not only the effect of relaxation time but also the influence of retardation time. Convective heat transfer is not ignored. Additionally, experiments verify that with sodium carboxymethylcellulose (CMC) solutions as base fluid, not only the flow curve conforms to Oldroyd-B model but also thermal conductivity decreases linearly with the increase of temperature.

Design/methodology/approach

The suitable pseudo similarity transformations are adopted to address partial differential equations to ordinary differential equations, which are computed analytically through homotopy analysis method (HAM).

Findings

It is worth noting that the increase of stagnation-point parameter diminishes momentum loss, so that the velocity enlarges, which makes boundary layer thickness thinner. With the increase of thermal retardation time parameter, the nanofluid temperature rises that implies heat penetration depth boosts up and the additional time required for nanofluid to heat transfer to surrounding nanoparticles is less, which is similar to the effects of concentration retardation time parameter on concentration field.

Originality/value

This paper aims to explore the unsteady stagnation-point flow, heat and mass transfer of upper-convected Oldroyd-B nanofluid with variable thermal conductivity and relaxation-retardation double-diffusion model.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 December 2017

O.K. Koriko, I.L. Animasaun, M. Gnaneswara Reddy and N. Sandeep

The purpose of this paper is to scrutinize the effects of nonlinear thermal radiation and thermal stratification effects on the flow of three-dimensional Eyring-Powell 36 nm…

107

Abstract

Purpose

The purpose of this paper is to scrutinize the effects of nonlinear thermal radiation and thermal stratification effects on the flow of three-dimensional Eyring-Powell 36 nm alumina-water nanofluid within the thin boundary layer in the presence of quartic autocatalytic kind of chemical reaction effects, and to unravel the effects of a magnetic field parameter, random motion of the tiny nanoparticles and volume fraction on the flow.

Design/methodology/approach

The chemical reaction between homogeneous (Eyring-Powell 36 nm alumina-water) bulk fluid and heterogeneous (three molecules of the catalyst at the surface) in the flow of magnetohydrodynamic three-dimensional flow is modeled as a quartic autocatalytic kind of chemical reaction. The electromagnetic radiation which occurs within the boundary layer is treated as the nonlinear form due to the fact that Taylor series expansion may not give full details of such effects within the boundary layer. With the aid of appropriate similarity variables, the nonlinear coupled system of partial differential equation which models the flow was reduced to ordinary differential equation boundary value problem.

Findings

A favorable agreement of the present results is obtained by comparing it for a limiting case with the published results; hence, reliable results are presented. The concentration of homogeneous bulk fluid (Eyring-Powell nanofluid) increases and decreases with ϕ and Pr, respectively. The increase in the value of magnetic field parameter causes vertical and horizontal velocities of the flow within the boundary layer to decrease significantly. The decrease in the vertical and horizontal velocities of Eyring-Powell nanofluid flow within the boundary layer is guaranteed due to an increase in the value of M. Concentration of homogeneous fluid increases, while the concentration of the heterogeneous catalyst at the wall decreases with M.

Originality/value

Considering the industrial applications of thermal stratification in solar engineering and polymer processing where the behavior of the flow possesses attributes of Eyring-Powell 36 nm alumina-water, this paper presents the solution of the flow problem considering 36 nm alumina nanoparticles, thermophoresis, stratification of thermal energy, Brownian motion and nonlinear thermal radiation. In addition, the aim and objectives of this paper fill such vacuum in the industry.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 21 June 2018

Anantha Kumar K., Ramana Reddy J.V., Sugunamma V. and N. Sandeep

The purpose of this paper is to propose the knowledge of thermal transport of magneto hydrodynamic non-Newtonian fluid flow over a melting sheet in the presence of exponential…

69

Abstract

Purpose

The purpose of this paper is to propose the knowledge of thermal transport of magneto hydrodynamic non-Newtonian fluid flow over a melting sheet in the presence of exponential heat source.

Design/methodology/approach

The group of PDE is mutated as dimension free with the assistance of similarity transformations and these are highly nonlinear and coupled. The authors solved the coupled ODE’s with the help of fourth-order Runge–Kutta based shooting technique. The impact of dimensionless sundry parameters on three usual distributions of the flow was analyzed and bestowed graphically. Along with them friction factor, heat and mass transfer rates have been assessed and represented with the aid of table.

Findings

Results exhibited that all the flow fields (velocity, concentration and temperature) are decreasing functions of melting parameter. Also the presence of cross-diffusion highly affects the heat and mass transfer performance.

Originality/value

Present paper deals with the heat and mass transfer characteristics of magnetohydrodynamics flow of non-Newtonian fluids past a melting surface. The effect of exponential heat source is also considered. Moreover this is a new work in the field of heat transfer in non-Newtonian fluid flows.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 220