Search results

1 – 5 of 5
Article
Publication date: 7 September 2015

Xinjin Liu and Xuzhong Su

Solospun technology is one of the most important new spinning methods, which is implemented by dividing Ring spinning triangle into several small primary triangles and one final…

Abstract

Purpose

Solospun technology is one of the most important new spinning methods, which is implemented by dividing Ring spinning triangle into several small primary triangles and one final triangle by a Solospun roller. That is, there are two parts of spinning triangle in the Solospun technology, including primary triangles part and final triangle part. In the general case, the primary triangles are much smaller than final triangle. Therefore, the purpose of this paper is to present theoretical study of Solospun yarn torqueby linking the fiber tension in the spinning triangle to yarn torque under the assumption that the primary triangles and the primary twist are ignored.

Design/methodology/approach

The theoretical model of the residual torque within Solospun yarn due to the fiber tension was given. Then, as an application of the proposed method, 14.6 tex cotton yarns were taken as an example for the numerical simulations. The fiber tension in the Solospun spinning triangles and corresponding yarn torque were simulated numerically by using Matlab software. The relationships between yarn torque and spinning triangle parameters are analyzed according to the simulation results. Furthermore, the properties of spun yarns produced by the Solospun and Ring spinning system are evaluated and analyzed by using the simulation results.

Findings

It is shown that comparing with the Ring spun yarn, Solospun yarn torque is a little larger. Meanwhile, with an increase of substrand number, the fluctuation of curve of average fiber tension in Solospun system is increased firstly, and then decreased, i.e. showing parabola shape, potentially leading to corresponding change of yarn torque.

Originality/value

In this paper, theoretical study of Solospun yarn torque is presented by linking the fiber tension in the spinning triangle to yarn torque under the assumption that the primary triangles and the primary twist are ignored. The theoretical model of the residual torque within Solospun yarn due to the fiber tension was given.

Details

International Journal of Clothing Science and Technology, vol. 27 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 2 September 2019

Xuzhong Su and Xinjin Liu

The purpose of this paper is to theoretically study the effects of ring spinning triangle division on spun yarn torques.

Abstract

Purpose

The purpose of this paper is to theoretically study the effects of ring spinning triangle division on spun yarn torques.

Design/methodology/approach

The case that the spinning triangle is divided into two parts, primary triangles and final triangle, is investigated. Theoretical model of yarn torque was given by linking the fiber tension in the spinning triangle to yarn torque under the assumption that the arrangement of fibers (substrands) in the substrands (yarn) is hexagonal close packing. Then, as an application of the proposed method, 14.6tex cotton yarns were taken as an example for the numerical simulations.

Findings

The fiber tensions in the divided spinning triangles and corresponding yarn torques were simulated numerically by using MATLAB software. The effects of division proportions and number of primary triangles on spun yarn torques are analyzed theoretically.

Originality/value

It is shown that suitable spinning triangle division is benefit for reducing yarn torque.

Details

International Journal of Clothing Science and Technology, vol. 31 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Content available
Article
Publication date: 7 September 2015

George Stylios

202

Abstract

Details

International Journal of Clothing Science and Technology, vol. 27 no. 5
Type: Research Article
ISSN: 0955-6222

Article
Publication date: 1 June 2015

Xinjin Liu, Xuzhong Su and Hong Zhang

Spinning triangle is a critical region in the spinning process of staple yarn, which geometry influences the distribution of fiber tension and determines the qualities of yarn…

Abstract

Purpose

Spinning triangle is a critical region in the spinning process of staple yarn, which geometry influences the distribution of fiber tension and determines the qualities of yarn directly. Therefore, the purpose of this paper is to investigate the fiber tension distribution at the twist point.

Design/methodology/approach

First, one theoretical model of fiber tension distributions at the twist point is given according to the motion law of fibers in the spinning triangle. Then, one calculation method of fiber tension at the twist point is given by two steps. First, the initial tension of each fiber at the front nip line caused by the yarn load should be calculated according to the models obtained based on the principle of minimum potential energy. Second, the fiber tensions at the twist point can be calculated using the obtained model in this paper. Finally, as an application of the proposed method, spinning triangles of a modified ring spinning system with a pair of offset device which can change the horizontal offset of the twist point to the symmetric axis of nip line of the spinning triangle continuously are studied. The fiber tension distributions are simulated numerically.

Findings

It is shown that the fiber tension distributions at the twist point can be determined by fiber feeding into and out the spinning triangle speed, the initial tension of each fiber at the front nip line, fiber tensile Young’s modulus and cross-sectional area, the number of fibers at spinning triangle and the individual fiber angle with the center fiber. The spinning experiment shows that taking appropriate right or left offset of the spinning triangle can help to improve the spun yarn qualities.

Originality/value

In this paper, the fiber tension distribution at the twist point is investigated. One theoretical model of fiber tension distributions at the twist point is given according to the motion law of fibers in the spinning triangle first. Then, one calculation method of fiber tension at the twist point has been given under the assumption that the initial tension of each fiber at the front nip line is caused by the yarn load.

Details

International Journal of Clothing Science and Technology, vol. 27 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 22 November 2017

Zhou Rongmei and Qin Xiaoxuan

As one natural fiber, spun silk is one of the top-grade textile materials and has attracted more and more attentions on textile processing. The purpose of this paper is to…

Abstract

Purpose

As one natural fiber, spun silk is one of the top-grade textile materials and has attracted more and more attentions on textile processing. The purpose of this paper is to introduce one kind of pneumatic compact spinning, four-line compact spinning (FLCS), into the silk spinning, and study and comparatively analyze corresponding yarn and fabric qualities.

Design/methodology/approach

First, two kinds of spun silk and viscose blend yarns, 120 Nm (8.3 tex) and 205 Nm (4.9 tex), were spun on the common ring spinning frame FK501 and spinning frame modified by FLCS, respectively. Then, after the plying and singeing procedures, the ply yarns 120 and 205 Nm/2 were produced. The evenness, breaking strength, and hairiness of the spun bobbin yarns and ply yarns were tested and comparatively analyzed. Then, properties of corresponding woven fabric, including the weight, thickness, permeability, stiffness, softness, smoothness, draping, wrinkle recovery, hand-touching (RHV), were measured and comparatively analyzed.

Findings

For the spun yarns, it is shown that by using the compact spinning method, the comprehensive quality of spun-silk blend bobbin and ply yarns are improved. For the fabrics, it is shown that compared with the fabric made of ring yarn, the weight and thickness of fabric made of compact yarn decreased, and the air permeability of fabric increased, but the difference is tiny. Meanwhile, the stiffness, smoothness of fabric made of compact yarn increased slightly, but the softness decreased slightly, leading to a little worse fabric hand-touching.

Originality/value

In the paper, one kind of pneumatic compact spinning, FLCS, was introduced into the silk spinning, and corresponding yarn and fabric qualities were studied and comparatively analyzed.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 5 of 5