Search results

1 – 10 of over 1000
Article
Publication date: 7 September 2015

Xinjin Liu and Xuzhong Su

Solospun technology is one of the most important new spinning methods, which is implemented by dividing Ring spinning triangle into several small primary triangles and one final…

Abstract

Purpose

Solospun technology is one of the most important new spinning methods, which is implemented by dividing Ring spinning triangle into several small primary triangles and one final triangle by a Solospun roller. That is, there are two parts of spinning triangle in the Solospun technology, including primary triangles part and final triangle part. In the general case, the primary triangles are much smaller than final triangle. Therefore, the purpose of this paper is to present theoretical study of Solospun yarn torqueby linking the fiber tension in the spinning triangle to yarn torque under the assumption that the primary triangles and the primary twist are ignored.

Design/methodology/approach

The theoretical model of the residual torque within Solospun yarn due to the fiber tension was given. Then, as an application of the proposed method, 14.6 tex cotton yarns were taken as an example for the numerical simulations. The fiber tension in the Solospun spinning triangles and corresponding yarn torque were simulated numerically by using Matlab software. The relationships between yarn torque and spinning triangle parameters are analyzed according to the simulation results. Furthermore, the properties of spun yarns produced by the Solospun and Ring spinning system are evaluated and analyzed by using the simulation results.

Findings

It is shown that comparing with the Ring spun yarn, Solospun yarn torque is a little larger. Meanwhile, with an increase of substrand number, the fluctuation of curve of average fiber tension in Solospun system is increased firstly, and then decreased, i.e. showing parabola shape, potentially leading to corresponding change of yarn torque.

Originality/value

In this paper, theoretical study of Solospun yarn torque is presented by linking the fiber tension in the spinning triangle to yarn torque under the assumption that the primary triangles and the primary twist are ignored. The theoretical model of the residual torque within Solospun yarn due to the fiber tension was given.

Details

International Journal of Clothing Science and Technology, vol. 27 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 June 2015

Xinjin Liu, Xuzhong Su and Hong Zhang

Spinning triangle is a critical region in the spinning process of staple yarn, which geometry influences the distribution of fiber tension and determines the qualities of yarn…

Abstract

Purpose

Spinning triangle is a critical region in the spinning process of staple yarn, which geometry influences the distribution of fiber tension and determines the qualities of yarn directly. Therefore, the purpose of this paper is to investigate the fiber tension distribution at the twist point.

Design/methodology/approach

First, one theoretical model of fiber tension distributions at the twist point is given according to the motion law of fibers in the spinning triangle. Then, one calculation method of fiber tension at the twist point is given by two steps. First, the initial tension of each fiber at the front nip line caused by the yarn load should be calculated according to the models obtained based on the principle of minimum potential energy. Second, the fiber tensions at the twist point can be calculated using the obtained model in this paper. Finally, as an application of the proposed method, spinning triangles of a modified ring spinning system with a pair of offset device which can change the horizontal offset of the twist point to the symmetric axis of nip line of the spinning triangle continuously are studied. The fiber tension distributions are simulated numerically.

Findings

It is shown that the fiber tension distributions at the twist point can be determined by fiber feeding into and out the spinning triangle speed, the initial tension of each fiber at the front nip line, fiber tensile Young’s modulus and cross-sectional area, the number of fibers at spinning triangle and the individual fiber angle with the center fiber. The spinning experiment shows that taking appropriate right or left offset of the spinning triangle can help to improve the spun yarn qualities.

Originality/value

In this paper, the fiber tension distribution at the twist point is investigated. One theoretical model of fiber tension distributions at the twist point is given according to the motion law of fibers in the spinning triangle first. Then, one calculation method of fiber tension at the twist point has been given under the assumption that the initial tension of each fiber at the front nip line is caused by the yarn load.

Details

International Journal of Clothing Science and Technology, vol. 27 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 2 September 2019

Xuzhong Su and Xinjin Liu

The purpose of this paper is to theoretically study the effects of ring spinning triangle division on spun yarn torques.

Abstract

Purpose

The purpose of this paper is to theoretically study the effects of ring spinning triangle division on spun yarn torques.

Design/methodology/approach

The case that the spinning triangle is divided into two parts, primary triangles and final triangle, is investigated. Theoretical model of yarn torque was given by linking the fiber tension in the spinning triangle to yarn torque under the assumption that the arrangement of fibers (substrands) in the substrands (yarn) is hexagonal close packing. Then, as an application of the proposed method, 14.6tex cotton yarns were taken as an example for the numerical simulations.

Findings

The fiber tensions in the divided spinning triangles and corresponding yarn torques were simulated numerically by using MATLAB software. The effects of division proportions and number of primary triangles on spun yarn torques are analyzed theoretically.

Originality/value

It is shown that suitable spinning triangle division is benefit for reducing yarn torque.

Details

International Journal of Clothing Science and Technology, vol. 31 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 August 2016

Xinjin Liu, Hong Zhang and Xuzhong Su

Pneumatic compact spinning is the most widely used compact spinning method at present, in which the negative pressure airflow is used to condense the fiber bundle and decrease the…

Abstract

Purpose

Pneumatic compact spinning is the most widely used compact spinning method at present, in which the negative pressure airflow is used to condense the fiber bundle and decrease the spinning triangle. Compact spinning with perforated drum and lattice apron are mainly two kinds of pneumatic compact spinning now. The purpose of this paper is to study the comparative analysis on four kinds of pneumatic compact spinning systems, including two kinds of compact spinning with perforated drum: Rieter’s COM4 and complete condensing spinning (CCS), two kinds of compact spinning with lattice apron: Sussen’s three-line compact spinning (TLCS) and Toyota’s four-line compact spinning (FLCS).

Design/methodology/approach

First, the basic properties of four systems were introduced and comparatively analyzed. Then, the 29.2 tex (20S), 14.6 tex (40S), 9.7 tex (60S) and 7.3 tex (80S) combed cotton yarns were spun in the four pneumatic compact spinning systems and ring spinning system, respectively. The evenness, breaking strength and hairiness of spun yarns were tested. Finally, the properties of corresponding woven fabric were tested.

Findings

It is shown that comparing to compact spinning with lattice apron, the disposable input cost of compact spinning with perforated drum is higher, but the maintenance cost is lower. Comparing to compact spinning with lattice apron, the evenness of yarn spun by compact spinning with perforated drum is improved whereas the breaking strength is decreased. Furthermore, although harmful long hairiness (=3 mm) of yarn spun by CCS is a little more, the beneficial short hairiness (1-2 mm) is also more, which can make the fabric fullness and have better comfortable feeling.

Originality/value

In the paper, comparative analysis on four kinds of pneumatic compact spinning systems, compact spinning with perforated drum: Rieter’s COM4 and CCS, and compact spinning with lattice apron: Sussen’s TLCS and Toyota’s FLCS, were studied. The basic properties, spun yarn qualities and properties of corresponding woven fabric of four systems were analyzed comparatively.

Details

International Journal of Clothing Science and Technology, vol. 28 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 27 May 2014

Xinjin Liu and Xuzhong Su

Condensing roller is the most key parts of compact spinning system. Hollow Roller is one of the most important kinds of condensing roller, the surface structure of which…

Abstract

Purpose

Condensing roller is the most key parts of compact spinning system. Hollow Roller is one of the most important kinds of condensing roller, the surface structure of which influences the flow field in condensing zone directly and affects the qualities of spun yarn. The purpose of this paper is to study the effect of Hollow Roller surface structure on flow field in condensing zone is investigated by using Fluent Software.

Design/methodology/approach

In this paper, the effect of Hollow Roller surface structure on flow field in condensing zone is investigated by using Fluent Software. The numerical simulations of the three-dimensional flow field in Hollow Roller compact spinning with two different kinds of roller surface structure, round hole structure and strip groove structure, are given according to the three-dimensional physical model of condensing zone. The flow velocity and static pressure distributions in condensing zone are given.

Findings

It is shown that the flow velocity streamline distribution is denser with strip groove structure than that of round hole structure, especially on the center line of strand, and flow velocity value is also larger in both Y-Z and X-Y cross-sections, and in X-Z cross-section shows the embracing inlet airflow, which is benefit for fiber condensing directly and improving negative pressure use efficiency. Furthermore, the simulations with three strip groove widths 0.4, 0.8 and 1.2 mm are given. The theatrical results obtained are illustrated by experiments.

Originality/value

In this paper, the effect of Hollow Roller surface structure on flow field in condensing zone is investigated by using Fluent Software in detail. A more accurate three-dimensional physical model of condensing zone is given. A new kind of strip groove structure of Hollow Roller is proposed. The theatrical results obtained are illustrated by experiments, and lay a foundation for practical Hollow Roller design.

Details

International Journal of Clothing Science and Technology, vol. 26 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 December 2004

George K. Stylios

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects…

3545

Abstract

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 16 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 22 November 2017

Zhou Rongmei and Qin Xiaoxuan

As one natural fiber, spun silk is one of the top-grade textile materials and has attracted more and more attentions on textile processing. The purpose of this paper is to…

Abstract

Purpose

As one natural fiber, spun silk is one of the top-grade textile materials and has attracted more and more attentions on textile processing. The purpose of this paper is to introduce one kind of pneumatic compact spinning, four-line compact spinning (FLCS), into the silk spinning, and study and comparatively analyze corresponding yarn and fabric qualities.

Design/methodology/approach

First, two kinds of spun silk and viscose blend yarns, 120 Nm (8.3 tex) and 205 Nm (4.9 tex), were spun on the common ring spinning frame FK501 and spinning frame modified by FLCS, respectively. Then, after the plying and singeing procedures, the ply yarns 120 and 205 Nm/2 were produced. The evenness, breaking strength, and hairiness of the spun bobbin yarns and ply yarns were tested and comparatively analyzed. Then, properties of corresponding woven fabric, including the weight, thickness, permeability, stiffness, softness, smoothness, draping, wrinkle recovery, hand-touching (RHV), were measured and comparatively analyzed.

Findings

For the spun yarns, it is shown that by using the compact spinning method, the comprehensive quality of spun-silk blend bobbin and ply yarns are improved. For the fabrics, it is shown that compared with the fabric made of ring yarn, the weight and thickness of fabric made of compact yarn decreased, and the air permeability of fabric increased, but the difference is tiny. Meanwhile, the stiffness, smoothness of fabric made of compact yarn increased slightly, but the softness decreased slightly, leading to a little worse fabric hand-touching.

Originality/value

In the paper, one kind of pneumatic compact spinning, FLCS, was introduced into the silk spinning, and corresponding yarn and fabric qualities were studied and comparatively analyzed.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 18 April 2017

Xinjin Liu and Xingfeng Wang

Spun silk is one of the top grade textile materials, and its products have high added value and meet the needs of the market. However, the technology level and process design of…

Abstract

Purpose

Spun silk is one of the top grade textile materials, and its products have high added value and meet the needs of the market. However, the technology level and process design of silk spinning are still much lower than cotton spinning; especially singeing is applied on spun silk yarn, and generates waste materials. The purpose of this paper is to introduce a kind of pneumatic compact spinning, four-line compact spinning (FLCS), into silk spinning and study the corresponding spun yarn qualities.

Design/methodology/approach

First, taking the silk spinning frame FK501 as an example, the process of modification of FLCS is presented. Then, three kinds of spun silk yarns, 80 Nm (12.5tex), 100 Nm (10tex) and 120 Nm (8.3tex), are spun on the common silk spinning frame FK501 and the spinning frame modified with FLCS. The evenness, breaking strength and hairiness of spun yarns are tested and comparatively analyzed. After the ply yarn production, three singeing procedures should be applied on the ring ply yarns, while only two singeing procedures should be applied on the compact ply yarns, which is beneficial for material saving.

Findings

The results show that compared with ring spun silk yarns, the comprehensive quality of compact spun silk yarns is improved, especially the harmful long hairiness (=3 mm) of yarn. Compared with the single spun silk yarn, the comprehensive qualities of the ply yarn are improved; especially, the breaking strength of the ply yarns is two times larger than the single yarn. After singeing, the hairiness of the ply yarn is decreased greatly, and the evenness is also improved, while the strength is decreased. Compared with ring spun silk yarn, the singeing times of compact spun silk yarn can be decreased, and the gas consumption in each singeing is also decreased, which is beneficial for material saving.

Originality/value

In this paper, a kind of pneumatic compact spinning, FLCS, is introduced into the silk spinning. It is shown that compared with ring spun silk yarns, the comprehensive quality of compact spun silk yarns is improved, especially the harmful long hairiness (=3 mm) of yarn. After the ply yarn production, three singeing procedures should be applied on the ring ply yarns, while only two singeing procedures should be applied on the compact ply yarns, which is beneficial for material saving.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 21 June 2018

Xuzhong Su, Xinjin Liu and Xiaoyan Liu

Pneumatic compact spinning is the most widely used compact spinning method at present, in which the negative pressure airflow is used to condense the fiber in order to decrease…

Abstract

Purpose

Pneumatic compact spinning is the most widely used compact spinning method at present, in which the negative pressure airflow is used to condense the fiber in order to decrease the spinning triangle and improve the yarn qualities. Therefore, the research on flow field in the condensing zone is always the emphasis for pneumatic compact spinning. The paper aims to discuss these issues.

Design/methodology/approach

By using finite element method (FEM), the flow field in two kinds of pneumatic compact spinning was studied. Taking three kinds of cotton yarns as examples, with the help of high-speed camera system OLYMPUS i-SPEED3, the motion trajectory of fiber strand in the condensing zone was obtained. Three-dimensional physical models of the condensing zone of the two compact spinning systems were obtained according to the measured parameters of practical spinning systems.

Findings

It is shown that on the both left edge of B1 line and right edge of B2 line, the airflow inflows to the center line of suction slot, and the condensed effects are produced, correspondingly. In the condensing zone, there are three condensing processes acting on the fiber strand, including the rapid condensing effects in the front condensing zone, the adequately condensing effects in the middle condensing zone, and stable output effects in the back condensing zone.

Originality/value

By using FEM, numerical simulations of three-dimensional flow field in condensing zone for two kinds of pneumatic compact spinning with lattice apron were presented, and corresponding spun yarn qualities were analyzed.

Details

International Journal of Clothing Science and Technology, vol. 30 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 October 1994

Momir Nikolic, Janez Cerkvenik and Zoran Stjepanovic

Presents the mechanical models of ring, rotor and air‐jet staple yarn formation. The analysis of formation peculiarities has enabled the establishment of differences among them in…

Abstract

Presents the mechanical models of ring, rotor and air‐jet staple yarn formation. The analysis of formation peculiarities has enabled the establishment of differences among them in micro‐ and macrostructure as well as in their mechanical and physical properties. The comparison of yarn and fabric quality parameters will be very valuable for weavers, knitters, garment manufacturers, finishers and designers. Gives productivity, spinability and economic factors for ring spinning, OE‐rotor and air‐jet spinning processes.

Details

International Journal of Clothing Science and Technology, vol. 6 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of over 1000