Search results

1 – 10 of 24
Article
Publication date: 28 October 2014

Hong Tang and Xian-Xia Li

– The purpose of this paper is to discuss the light scattering of nonspherical particles that is very important for the research on the aerosol optical properties.

Abstract

Purpose

The purpose of this paper is to discuss the light scattering of nonspherical particles that is very important for the research on the aerosol optical properties.

Design/methodology/approach

In this paper, the authors use the spheroid model as the characteristic particle shape to study the single scattering albedo of real nonspherical particles. Meanwhile, the extinction and scattering cross section of spheroids are calculated with the T matrix method combined with the improved geometric optics approximation method (IGOM).

Findings

Through this combination, the extinction and scattering cross section of spheroids can be obtained in the larger size range and aspect ratio range. Furthermore, the comparison of the single scattering albedo for the spheroids and their equivalent spheres is conducted in order to investigate the difference of the spherical and nonspherical particles.

Originality/value

Simulation experiments indicate that the single scattering albedo of spheroids can be calculated well with this combination, and it has some obvious influence on the variation of the aspect ratio, incident wavelength, and complex refractive index of spheroid particles.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 January 2014

Sofen K. Jena, Swarup K. Mahapatra and Amitava Sarkar

The current study aims to address the interaction between participating media radiation with thermo-gravitational convection of an electrically conducting fluid enclosed within a…

Abstract

Purpose

The current study aims to address the interaction between participating media radiation with thermo-gravitational convection of an electrically conducting fluid enclosed within a tilted enclosure under an externally imposed time-independent uniform magnetic field.

Design/methodology/approach

The differentially heated boundaries of the tilted enclosure are considered to be diffuse, gray and the enclosed fluid is assumed to be absorbing, emitting and isotropically scattering. The Navier-Stokes equations, meant for magneto convection are solved using modified MAC method. Gradient dependent consistent hybrid upwind scheme of second order is used for discretization of the convective terms. Discrete ordinate method, with S8 approximation, is used to model radiative transport equation in the presence of radiatively active medium.

Findings

Effect of uniform magnetic field with different magnitudes and orientations of cavity has been numerically simulated. The effect of participating media radiation has been investigated for different optical thicknesses, emissivities, scattering albedos and Planks number. The results are provided in both graphical and tabular forms. The flow lines, isotherms bring clarity in the understanding of flow behaviour and heat transfer characteristics.

Originality/value

Despite the idealized nature, the present study is quite essential to understand the cumbersome physics of realistic problem.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 1995

T. Laclair and J.I. Frankel

One‐dimensional radiative heat transfer is considered in aplane‐parallel geometry for an absorbing, emitting, and linearly anisotropicscattering medium subjected to azimuthally…

Abstract

One‐dimensional radiative heat transfer is considered in a plane‐parallel geometry for an absorbing, emitting, and linearly anisotropic scattering medium subjected to azimuthally symmetric incident radiation at the boundaries. The integral form of the transport equation is used throughout the analysis. This formulation leads to a system of weakly‐singular Fredholm integral equations of the second kind. The resulting unknown functions are then formally expanded in Chebyshev series. These series representations are truncated at a specified number of terms, leaving residual functions as a result of the approximation. The collocation and the Ritz‐Galerkin methods are formulated, and are expressed in terms of general orthogonality conditions applied to the residual functions. The major contribution of the present work lies in developing quantitative error estimates. Error bounds are obtained for the approximating functions by developing equations relating the residuals to the errors and applying functional norms to the resulting set of equations. The collocation and Ritz‐Galerkin methods are each applied in turn to determine the expansion coefficients of the approximating functions. The effectiveness of each method is interpreted by analyzing the errors which result from the approximations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 5 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 May 2008

Raymond Viskanta

This paper seeks to review the literature on methods for solving the radiative transfer equation (RTE) and integrating the radiant energy quantities over the spectrum required to…

1062

Abstract

Purpose

This paper seeks to review the literature on methods for solving the radiative transfer equation (RTE) and integrating the radiant energy quantities over the spectrum required to predict the flow, the flame and the thermal structures in chemically reacting and radiating combustion systems.

Design/methodology/approach

The focus is on methods that are fast and compatible with the numerical algorithms for solving the transport equations using the computational fluid dynamics techniques. In the methods discussed, the interaction of turbulence and radiation is ignored.

Findings

The overview is limited to four methods (differential approximation, discrete ordinates, discrete transfer, and finite volume) for predicting radiative transfer in multidimensional geometries that meet the desired requirements. Greater detail in the radiative transfer model is required to predict the local flame structure and transport quantities than the global (total) radiation heat transfer rate at the walls of the combustion chamber.

Research limitations/implications

The RTE solution methods and integration of radiant energy quantities over the spectrum are assessed for combustion systems containing only the infra‐red radiating gases and gas particle mixtures. For strongly radiating (i.e. highly sooting) and turbulent flows the neglect of turbulence/radiation interaction may not be justified.

Practical implications

Methods of choice for solving the RTE and obtaining total radiant energy quantities for practical combustion devices are discussed.

Originality/value

The paper has identified relevant references that describe methods capable of accounting for radiative transfer to simulate processes arising in combustion systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 18 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 April 2005

Kamel Guedri, Mohamed Naceur Borjini and Habib Farhat

To provide a finite volume code, based on Cartesian coordinates, for studying combined conductive and radiative heat transfer in three‐dimensional irregular geometries.

Abstract

Purpose

To provide a finite volume code, based on Cartesian coordinates, for studying combined conductive and radiative heat transfer in three‐dimensional irregular geometries.

Design/methodology/approach

In the present study, a three‐dimensional blocked‐off‐region procedure was presented and implemented in a numerical code based on the finite volume method to model combined conductive and radiative heat transfer in complex geometries. This formulation was developed and tested in three‐dimensional complex enclosures with diffuse reflective surfaces and containing gray absorbing‐emitting and isotropically scattering medium. This approach was applied to analyze the effect of the main of thermoradiative parameters on the temperature and flux values for three‐dimensional L‐shaped enclosure.

Findings

The proposed isotropic model leads to satisfactory solutions with comparison to reference data, which entitles us to extend it to anisotropic diffusion cases or to non‐gray media. The blocked‐off‐region procedure traits both straight and curvilinear boundaries. For curved or inclined boundaries, a fine or a non‐uniform grid is needed.

Originality/value

This paper offers a simple Cartesian practical technique to study the combined conductive and radiative heat transfer in three‐dimensional complex enclosures with both straight and curvilinear boundaries.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 15 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 September 2012

H. Amiri, S.H. Mansouri and P.J. Coelho

The solution of radiative heat transfer problems in participating media is often obtained using the standard discrete ordinates method (SDOM). This method produces anomalies…

Abstract

Purpose

The solution of radiative heat transfer problems in participating media is often obtained using the standard discrete ordinates method (SDOM). This method produces anomalies caused by ray effects if radiative boundary conditions have discontinuities or abrupt changes. Ray effects may be mitigated using the modified discrete ordinates method (MDOM), which is based on superposition of the solutions obtained by considering separately radiation from the walls and radiation from the medium. The purpose of this paper is to study the role of ray effects in combined conduction‐radiation problems and investigate the superiority of the MDOM over SDOM.

Design/methodology/approach

The MDOM has been used to calculate radiative heat transfer in irregular geometries using body‐fitted coordinates. Here, the blocked‐off region concept, originally developed in computational fluid dynamics, is used along with the finite volume method and SDOM or MDOM to solve combined conduction‐radiation heat transport problems in irregular geometries. Enclosures with an absorbing, emitting and isotropically or anisotropically scattering medium are analyzed.

Findings

The results confirm the capability of the MDOM to minimize the anomalies due to ray effects in combined heat transfer problems, and demonstrate that MDOM is more computationally efficient than SDOM.

Originality/value

The paper demonstrates the application of MDOM to combined conduction‐radiation heat transfer problems in irregular geometries using blocked‐off method.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 22 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 May 1996

Ian Colbeck

Aerosols play an important role in the radiative balance of the atmosphere. While sulphate aerosols are recognized as the dominant contributor of tropospheric aerosols over and…

1313

Abstract

Aerosols play an important role in the radiative balance of the atmosphere. While sulphate aerosols are recognized as the dominant contributor of tropospheric aerosols over and near industrialized regions, smoke aerosols containing soot or elemental carbon are regarded with increasing importance on a global basis. The fate of carbonaceous aerosols is at present poorly understood as a result of various atmospheric processes. This paper examines the effect of morphology on the physical and chemical properties of atmospheric aerosols, in the context of fractal theory. The use of a fractal dimension to describe aggregate morphology enables more accurate modelling of sedimentation and optical characteristics.

Details

Environmental Management and Health, vol. 7 no. 2
Type: Research Article
ISSN: 0956-6163

Keywords

Article
Publication date: 1 November 2011

Srinivasa Ramanujam, R. Chandrasekar and Balaji Chakravarthy

The purpose of this paper is to develop an algorithm, using PCA‐based neural network, to retrieve the vertical rainfall structure in a precipitating atmosphere. The algorithm is…

Abstract

Purpose

The purpose of this paper is to develop an algorithm, using PCA‐based neural network, to retrieve the vertical rainfall structure in a precipitating atmosphere. The algorithm is powered by a rigorous solution to the plane parallel radiative transfer equation for the atmosphere with thermodynamically consistent vertical profiles of humidity, temperature and cloud structures, together with “measured” vertical profiles of the rain structure derived from a radar.

Design/methodology/approach

The raining atmosphere is considered to be a plane parallel, radiatively participating medium. The atmospheric thermodynamic profiles such as pressure, temperature and relative humidity along with wind speed at sea surface and cloud parameters corresponding to Nargis, a category 4 tropical cyclone that made its landfall on May 2, 2008 at the Republic of Myanmar, are obtained by solving the flux form of Euler's equations in three‐dimensional form. The state‐of‐the‐art community software Weather Research and Forecasting has been used for solving the set of equations. The three‐dimensional rain profiles for the same cyclone at the same instant of time are obtained from National Aeronautics and Space Administration's space borne Tropical Rainfall Measuring Mission's precipitation radar over collocated pixels. An in‐house Micro‐Tropiques code is used to perform radiative transfer simulations for frequencies corresponding to a typical space borne radiometer, and hence to generate the database which is later used for training the neural network. The back propagation‐based neural network is optimized with reduced number of parameters using principal component analysis (PCA).

Findings

The results show that neural network is capable of retrieving the vertical rainfall structure with a correlation coefficient of over 0.99. Further, reducing the ill‐posedness in retrieving 56 parameters from just nine measurements using PCA has improved the root mean square error in the retrievals at reduced computational time.

Originality/value

The paper shows that combining numerically generated atmospheric profiles together with radar measurements to serve as input to a radiative transfer model brings in the much‐required synergy between numerical weather prediction, radar measurements and radiative transfer. This strategy can be gainfully used in satellite meteorology. Using principal components to reduce the ill‐posedness, thereby increasing the robustness in retrieving vertical rain structure, has been attempted for the first time. A well‐trained network can be used as one possible option for an operational algorithm for the proposed Indian climate research satellite Megha‐Tropiques, due to be launched in early 2011.

Article
Publication date: 1 March 2003

J. Hill, P. Hostert and A. Röder

The importance of thoroughly monitoring the state of the environment in Mediterranean ecosystems has long been recognised. With regard to the spatial extension of large areas…

1454

Abstract

The importance of thoroughly monitoring the state of the environment in Mediterranean ecosystems has long been recognised. With regard to the spatial extension of large areas threatened by various degradation processes it becomes obvious that terrestrial observation alone is hardly able to cope with this task. Remote sensing with air‐ or spaceborne sensor systems provides a comprehensive spatial coverage, is intrinsically synoptic, and collects objective, repetitive data and is thus ideally suited for monitoring environmentally sensitive areas. The major problem associated with its use is to quantitatively interpret a measured signal that has interacted with remote objects in terms of the properties of these objects. In parallel to the advances in remote sensing geographical information systems (GIS) have emerged as a fully functional support for resource management tasks. As an example for tracing and analysing environmental change with coupled remote sensing and GIS approaches we present a case study on the island of Crete which was carried out in the framework of research programmes supported by the European Union. Although it is known that grazing in Crete dramatically increased during the last two decades, it was not well understood how grazing pressure differs spatially and in how far it altered the landscape of Crete. One of the major rangeland areas of central Crete, the Psiloritis Mountains, have been selected to serve as a test site for answering these questions. On the basis of an extended Landsat‐TM and ‐MSS data set acquired between 1977 and 1996 it has been shown that time series analysis techniques based on vegetation fractions derived from spectral unmixing can substantiate a spatio‐temporal interpretation of degradation processes. In areas under massive grazing pressure such processes can be linked to the respective driving forces by GIS‐based analyses of natural and socio‐economic boundary conditions.

Details

Management of Environmental Quality: An International Journal, vol. 14 no. 1
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 5 June 2007

K.M. Fan, K.W. Wong, W.L. Cheung and I. Gibson

The purpose of this paper is to report on a study of the effect of glass microsphere (GMS) and potassium bromide (KBr) powder as an additive on the reflectance and transmittance…

Abstract

Purpose

The purpose of this paper is to report on a study of the effect of glass microsphere (GMS) and potassium bromide (KBr) powder as an additive on the reflectance and transmittance of TrueFormTM acrylic‐styrene co‐polymer (TF) powder to CO2 laser during selective laser sintering (SLS).

Design/methodology/approach

GMSs and KBr powder were chosen because glass is opaque to CO2 laser while KBr is transparent. The GMSs were treated with silane coupling agent and hydrofluoric acid to study the surface effect on the optical properties of TF/GMS blends. KBr powder was blend with TF powder in an attempt to modify the penetration depth of the laser in the powder bed. An integrating sphere was used to measure the reflectance of the powder bed. In the measurement of transmittance, a power meter was placed below the powder layer, which was supported by a KCl disc, to register the transmitted laser energy through the powder layer.

Findings

For the TF/GMS blends, smaller GMSs gave a higher reflectance while the surface treatments had little effect. The transmittance of both the polymer and the blends were very low. Although bulk KBr is highly transparent to CO2 laser, adding 30 vol% of KBr powder to TF hardly increased the transmittance of the powder bed.

Research limitations/implications

Experiments were carried out on a modified laser engraving machine rather than a commercial SLS machine. The laser energy density used was lower than that for normal SLS processes and no significant changes of physical condition of the powder bed were inflicted. The results only indicate the optical properties in the initial state.

Practical implications

The effects of transparent and non‐transparent fillers on the optical properties of the powder bed are presented.

Originality/value

This work furthers the understanding of heat absorption behavior of the powder bed during SLS.

Details

Rapid Prototyping Journal, vol. 13 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 24