Search results

1 – 10 of 334
Article
Publication date: 17 October 2018

Fei Hu, Yanping Song, Yundou Xu and Huaizhou Wen

This paper aims to synthesize a modular deployable truss antenna with the lower degree of freedom (DOF) and larger folding ratio. Because of the advantages of this kind of new…

Abstract

Purpose

This paper aims to synthesize a modular deployable truss antenna with the lower degree of freedom (DOF) and larger folding ratio. Because of the advantages of this kind of new truss antenna, the modules that make up the antenna can be deployed together by the synchronous motor drivers instead of twist springs to realize the controllable deployment.

Design/methodology/approach

The closed-loop branch equivalence method is proposed to synthesize the single DOF module and the large deployable reflector. The complex mechanism can be equivalently replaced by a simpler mechanism based on screw theory. The motion pairs are synthesized and optimized to make the curved surface achieve to the maximum folding ratio when the modular parabolic truss antenna is folded.

Findings

The results show that the 3(3RR-3RRR)-3RRR-3RRR planar module is a single DOF mechanism. Additionally, the adjacent parts of every two modules are connected with universal joints to obtain the new truss antenna when the modules are networked.

Practical implications

The configuration of this new modular deployable truss antenna can be synthesized to design the structure, and the proposed method can be applied to other space multi-loop coupling mechanism and other spacecraft.

Originality/value

This paper presents an approach to synthesizing the motion pairs, as well as the DOF analysis. The results lay a foundation for the further analysis of the deployable control and dynamics of this kind of antenna. And the new modular truss antenna has a practical application in aerospace engineering.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 11 January 2011

Shiqi Li, Yang Liu and Ming Xie

The purpose of this paper is to present the design and implementation of a new manipulator with six joints driven by a single DC motor.

Abstract

Purpose

The purpose of this paper is to present the design and implementation of a new manipulator with six joints driven by a single DC motor.

Design/methodology/approach

The manipulator consists of several modules, each of which has the twisting and pivoting degrees of freedom. Two clutches and one brake are mounted to control each joint. A clutch model based on PWM control is built to compute the average velocity of each clutch. Two parameters are involved in the model: PWM frequency and duty ratio. PWM frequency is limited by the natural frequencies of structure with all postures. The theoretical duty ratio should be adjusted according to the clutch model. Two experiments – line tracking and arc tracking – are carried out to verify the effectiveness of the control system.

Findings

The study has designed a manipulator with six joints driven by a single DC motor which powers all the modules through a main shaft and several clutches. In the manipulator, all the modules are supplied with a constant speed input and provide a bi‐directional variable output. Experimental results show the clutch model built for the manipulator can be applied to the joint control of all multi‐joint manipulators.

Originality/value

The paper describes a dexterous and light‐weight manipulator driven by a single motor and designed with bi‐directional joints.

Details

Industrial Robot: An International Journal, vol. 38 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 8 July 2022

Xiaolong Yang, Long Zheng, Da Lü, Jinhao Wang, Shukun Wang, Hang Su, Zhixin Wang and Luquan Ren

Snake-inspired robots are of great significance in many fields because of their great adaptability to the environment. This paper aims to systematically illustrate the research…

1071

Abstract

Purpose

Snake-inspired robots are of great significance in many fields because of their great adaptability to the environment. This paper aims to systematically illustrate the research progress of snake-inspired robots according to their application environments. It classifies snake-inspired robots according to the numbers of degrees of freedom in each joint and briefly describes the modeling and control of snake-inspired robots. Finally, the application fields and future development trends of snake-inspired robots are analyzed and discussed.

Design/methodology/approach

This paper summarizes the research progress of snake-inspired robots and clarifies the requirements of snake-inspired robots for self-adaptive environments and multi-functional tasks. By equipping various sensors and tool modules, snake-inspired robots are developed from fixed-point operation in a single environment to autonomous operation in an amphibious environment. Finally, it is pointed out that snake-inspired robots will be developed in terms of rigid and flexible deformable structure, long endurance and multi-function and intelligent autonomous control.

Findings

Inspired by the modular and reconfigurable concepts of biological snakes, snake-inspired robots are well adapted to unknown and changing environments. Therefore, snake-inspired robots will be widely used in industrial, military, medical, post-disaster search and rescue applications. Snake-inspired robots have become a hot research topic in the field of bionic robots.

Originality/value

This paper summarizes the research status of snake-inspired robots, which facilitates the reader to be a comprehensive and systematic understanding of the research progress of snake-inspired robots. This helps the reader to gain inspiration from biological perspectives.

Details

Assembly Automation, vol. 42 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 25 January 2018

Xiaolong Lu, Shiping Zhao, Xiaoyu Liu and Yishu Wang

The purpose of this paper is to describe the design and development of “Pylon-Climber II”, a 5-DOF biped climbing robot (degree of freedom – DOF) for moving on the external…

Abstract

Purpose

The purpose of this paper is to describe the design and development of “Pylon-Climber II”, a 5-DOF biped climbing robot (degree of freedom – DOF) for moving on the external surface of a tower and assisting the electricians to complete some maintenance tasks.

Design/methodology/approach

The paper introduces a pole-climbing robot, which consists of a 5-DOF mechanical arm and two novel grippers. The gripper is composed of a two-finger clamping module and a retractable L-shaped hook module. The robot is symmetrical in structure, and the rotary joint for connecting two arms is driven by a linear drive mechanism.

Findings

The developed prototype proved a new approach for the inspection and maintenance of the electricity pylon. The gripper can reliably grasp the angle bars with different specifications by using combined movement of the two-finger clamping module and the retractable L-shaped hook module and provide sufficient adhesion force for the Pylon-Climber II.

Practical implications

The clamping experiments of the gripper and the climbing experiments of the robot were carried out on a test tower composed of some angle bars with different specification.

Originality/value

This paper includes the design and development of a 5-DOF biped climbing robot for electricity pylon maintenance. The climbing robot can move on the external surface of the electric power tower through grasping the angle bar alternatively. The gripper that is composed of a two-finger gripping module and a retractable L-shaped hook module is very compact and can provide reliable adhesion force for the climbing robot.

Details

Industrial Robot: An International Journal, vol. 45 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 27 July 2012

Hongjian Yu, Bing Li, Yang Wang and Ying Hu

Reconfigurability of the assembly fixtures, which enables a set of sheet metal automotive parts to be produced on a single production line, is becoming crucial to maintaining…

Abstract

Purpose

Reconfigurability of the assembly fixtures, which enables a set of sheet metal automotive parts to be produced on a single production line, is becoming crucial to maintaining competitiveness in the rapidly changing market. One of the key issues in reconfigurable fixture design is to identify the fixture configuration and make sure there is enough workspace for a family of parts. The purpose of this paper is to address this issue, through the design and analysis of two novel reconfigurable fixturing robots.

Design/methodology/approach

Following an introduction, the application of the reconfigurable fixturing robot addressed in this paper is described; it is characterized by using parallel manipulator as programmable fixture elements. Kinematic design and reconfigurable design of the fixturing robot is presented based on screw theory and modularized design, respectively.

Findings

The proposed reconfigurable fixturing robots can transform their configurations with 4 DoF (degrees‐of‐freedom), and have a continuous workspace for their application.

Originality/value

Reconfigurability of the assembly fixtures is an important issue for automotive manufacturing, due to the highly competitive nature of this industry. The proposed reconfigurable fixturing robots can greatly facilitate the development of new models of vehicles.

Details

Assembly Automation, vol. 32 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 21 March 2019

Muddasar Anwar, Toufik Al Khawli, Irfan Hussain, Dongming Gan and Federico Renda

This paper aims to present a soft closed-chain modular gripper for robotic pick-and-place applications. The proposed biomimetic gripper design is inspired by the Fin Ray effect…

Abstract

Purpose

This paper aims to present a soft closed-chain modular gripper for robotic pick-and-place applications. The proposed biomimetic gripper design is inspired by the Fin Ray effect, derived from fish fins physiology. It is composed of three axisymmetric fingers, actuated with a single actuator. Each finger has a modular under-actuated closed-chain structure. The finger structure is compliant in contact normal direction, with stiff crossbeams reorienting to help the finger structure conform around objects.

Design/methodology/approach

Starting with the design and development of the proposed gripper, a consequent mathematical representation consisting of closed-chain forward and inverse kinematics is detailed. The proposed mathematical framework is validated through the finite element modeling simulations. Additionally, a set of experiments was conducted to compare the simulated and prototype finger trajectories, as well as to assess qualitative grasping ability.

Findings

Key Findings are the presented mathematical model for closed-loop chain mechanisms, as well as design and optimization guidelines to develop controlled closed-chain grippers.

Research limitations/implications

The proposed methodology and mathematical model could be taken as a fundamental modular base block to explore similar distributed degrees of freedom (DOF) closed-chain manipulators and grippers. The enhanced kinematic model contributes to optimized dynamics and control of soft closed-chain grasping mechanisms.

Practical implications

The approach is aimed to improve the development of soft grippers that are required to grasp complex objects found in human–robot cooperation and collaborative robot (cobot) applications.

Originality/value

The proposed closed-chain mathematical framework is based on distributed DOFs instead of the conventional lumped joint approach. This is to better optimize and understand the kinematics of soft robotic mechanisms.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 April 2005

M. Tavakoli, M.R. Zakerzadeh, G.R. Vossoughi and S. Bagheri

Aims to describe design, prototyping and characteristics of a pole climbing/manipulating robot with ability of passing bends and branches of the pole.

1773

Abstract

Purpose

Aims to describe design, prototyping and characteristics of a pole climbing/manipulating robot with ability of passing bends and branches of the pole.

Design/methodology/approach

Introducing a hybrid (parallel/serial) four degree of freedom (DOF) mechanism as the main part of the robot and also introduces a unique gripper design for pole climbing robots.

Findings

Finds that a robot, with the ability of climbing and manipulating on poles with bends and branches, needs at least 4 DOFs. Also an electrical cylinder is a good option for climbing robots and has some advantages over pneumatic or hydraulic cylinders.

Research limitations/implications

The robot is semi‐industrial size. Design and manufacturing of an industrial size robot are a good suggestion for future works.

Practical implications

With some changes on the gripper module and the last tool module, the robot is able to do some service works like pipe testing, pipe/pole cleaning, light bulb changing in highways etc.

Originality/value

Design and manufacturing of a pole‐climbing and manipulating robot with minimum DOFs for construction and service works.

Details

Industrial Robot: An International Journal, vol. 32 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Content available
Article
Publication date: 23 May 2022

Tao Wang, Zheng Xie, Yuan Li, Yan Zhang, Hao Zhang and Frank Kirchner

This study aims to introduce the DoraHand, and the basic capability and performance have been verified in this paper. Besides the idea of sharing modular design and sensor design…

Abstract

Purpose

This study aims to introduce the DoraHand, and the basic capability and performance have been verified in this paper. Besides the idea of sharing modular design and sensor design, the authors want to deliver an affordable and practical dexterous hand to the research area to contribute to the robotic manipulation area.

Design/methodology/approach

This paper introduced the DoraHand, a novel scalable and practical modular dexterous hand, which, adopting modular finger and palm design, fully actuated joint and tactile sensors, can improve the dexterity for robotic manipulation and lower the complexity of maintenance. A series of experiments are delivered to verify the performance of the hand and sensor module.

Findings

The parameters of the DoraHand are verified and suitable for the research of robotics manipulation area, the sensing capability has been tested with the static experiment and the slip prediction algorithm. And, the advantage of modular design and extensible interface have been verified by the real application.

Research limitations/implications

The authors continue improving the DoraHand and extend it to more different applications. The authors want to make the DoraHand as a basic research platform in the robotic manipulation area.

Practical implications

The DoraHand has been sent to more than ten different research institutes for different research applications. The authors continue working on this hand for better performance, easier usage and more affordability.

Social implications

This kind of dexterous hand can help researchers get rid of complex physical issues and pay more attention to the algorithm part; it can help to make robotic manipulation work more popular.

Originality/value

The key design in the DoraHand is the modular finger and sensing module. With the special design in mechanical and electrical parts, the authors build reliable hardware and can support the diversity requirement in the robotic manipulation area. The hand with tactile sensing capability can be used in more research and applications with its extensibility.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 4 September 2017

Robert Iacob, Diana Popescu, Frederic Noel and Cedric Masclet

The paper aims to present the processing pipeline of an assembly immersive simulation application which can manage the interaction between the virtual scene and user using…

Abstract

Purpose

The paper aims to present the processing pipeline of an assembly immersive simulation application which can manage the interaction between the virtual scene and user using stereoscopic display and haptic devices. A new set of elements are integrated in a Collaborative Virtual Environment (CVE) and validated using an approach based on subjective and objective users’ performance criteria. The developed application is intended for Assembly/Disassembly (A/D) analysis, planning and training.

Design/methodology/approach

A mobility module based on contact information is used to handle the assembly components’ movements through real-time management of collision detection and kinematically constraint guidance. Information on CVE architecture, modules and application configuration process are presented. Impact of device type (3 degrees of freedom (DoFs) vs 6 DoFs) over user’s experience is evaluated. Parameters (number of assembled components and components assembly time) are measured for each user and each haptic device, and results are compared and discussed.

Findings

Test results proved the efficiency of using a mobility module based on predefined kinematic constraints for reducing the complexity of collision detection algorithms in real-time assembly haptic simulations. Also, experiments showed that, generally, users performed better with 3 DoFs haptic device compared to 6 DoFs haptic equipment.

Originality/value

The proposed immersive application automates the kinematical joints inference from 3D computer-aided design (CAD) assembly models and integrates it within a haptic-based virtual environment, for increasing the efficiency of A/D process simulations.

Details

Assembly Automation, vol. 37 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 18 April 2020

Mohamed Khalil Mezghiche and Noureddine Djedi

The purpose of this study is to explore using real-observation quantum genetic algorithms (RQGAs) to evolve neural controllers that are capable of controlling a…

Abstract

Purpose

The purpose of this study is to explore using real-observation quantum genetic algorithms (RQGAs) to evolve neural controllers that are capable of controlling a self-reconfigurable modular robot in an adaptive locomotion task.

Design/methodology/approach

Quantum-inspired genetic algorithms (QGAs) have shown their superiority against conventional genetic algorithms in numerous challenging applications in recent years. The authors have experimented with several QGAs variants and real-observation QGA achieved the best results in solving numerical optimization problems. The modular robot used in this study is a hybrid simulated robot; each module has two degrees of freedom and four connecting faces. The modular robot also possesses self-reconfiguration and self-mobile capabilities.

Findings

The authors have conducted several experiments using different robot configurations ranging from a single module configuration to test the self-mobile property to several disconnected modules configuration to examine self-reconfiguration, as well as snake, quadruped and rolling track configurations. The results demonstrate that the robot was able to perform self-reconfiguration and produce stable gaits in all test scenarios.

Originality/value

The artificial neural controllers evolved using the real-observation QGA were able to control the self-reconfigurable modular robot in the adaptive locomotion task efficiently.

Details

World Journal of Engineering, vol. 17 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 334