Search results

1 – 10 of 237
Article
Publication date: 26 August 2021

Joanne Pransky

The following paper is a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business and personal experience…

Abstract

Purpose

The following paper is a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business and personal experience of a prominent, robotic industry PhD-turned innovator and entrepreneur regarding his pioneering efforts. The paper aims to discuss these issues.

Design/methodology/approach

The interviewee is Dr Homayoon Kazerooni, Professor of Mechanical Engineering at the University of California (UC) Berkeley, pioneer and leading entrepreneur of robotic exoskeletons. He is a foremost expert in robotics, control sciences, exoskeletons, bioengineering and mechatronics design. Kazerooni shares in this interview details on his second start-up, US Bionics DBA suitX.

Findings

Kazerooni received his MS and PhD in Mechanical Engineering from the Massachusetts Institute of Technology (MIT). He has been a Professor at UC Berkeley for over 30 years. He also serves as the Director of the Berkeley Robotics and Human Engineering Laboratory “KAZ LAB.” The lab’s early research focused on enhancing human upper extremity strength, and Kazerooni led his team to successfully develop a new class of intelligent assist devices that are currently marketed worldwide and used by manual laborers in distribution centers and factories worldwide. Dr Kazerooni’s later work focused on the control of human–machine systems specific to human lower extremities. After developing BLEEX, ExoHiker and ExoClimber – three load-carrying exoskeletons – his team at Berkeley created Human Universal Load Carrier. It was the first energetically autonomous, orthotic, lower extremity exoskeleton that allowed its user to carry 100-pound weights in various terrains for an extended period, without becoming physically overwhelmed. The technology was initially licensed to Ekso Bionics and then Lockheed Martin. Kazerooni and his team also developed lower-extremity technology to aid persons who have experienced a stroke, spinal cord injuries or have health conditions that obligate them to use a wheelchair.

Originality/value

In 2005, Kazerooni founded Ekso Bionics, the very first exoskeleton company in America, which went on to become a publicly owned company in 2014. Ekso, currently marketed by Ekso Bionics, was designed jointly between Ekso Bionics and Berkeley for paraplegics and those with mobility disorders to stand and walk with little physical exertion. In 2011, Austin Whitney, a Berkeley student suffering from lower limb paralysis, walked for commencement in one of Kazerooni’s exoskeletons, “The Austin Exoskeleton Project,” named in honor of Whitney. Kazerooni went on in 2011, to found US Bionics, DBA suitX, a venture capital, industry and government-funded robotics exoskeleton company. suitX’s core technology is focused on the design and manufacturing of affordable industrial and medical exoskeletons to improve the lives of workers and people with gait impairment. suitX has received investment from Wistron (Taiwan), been awarded several US government awards and won two Saint-Gobain NOVA Innovation Awards. suitX has also won the US$1m top prize in the “UAE AI and Robotics for Good” Competition. Its novel health-care exoskeleton Phoenix has recently received FDA approval. Kazerooni has won numerous awards including Discover magazine’s Technological Innovation Award, the McKnight-Land Grant Professorship and has been a recipient of the outstanding ASME Investigator Award. His research was recognized as the most innovative technology of the year in New York Times Magazine. He has served in a variety of leadership roles in the mechanical engineering community and served as editor of two journals: ASME Journal of Dynamics Systems and Control and IEEE Transaction on Mechatronics. Kazerooni has published more than 200 articles to date, delivered over 130 plenary lectures internationally and is the inventors of over 100 patents.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 25 February 2014

Chao Liu, Jing Liu, Li Xu and Wei Xiang

Entomology is a useful tool when applied to engineering challenges that have been solved in nature. Especially when these special abilities of olfactory sensation, vision…

Abstract

Purpose

Entomology is a useful tool when applied to engineering challenges that have been solved in nature. Especially when these special abilities of olfactory sensation, vision, auditory perception, fly, jump, navigation, chemical synthesis, exquisite structure and others were connected with mechanization, informationization and intelligentization of modern science and technology, and produced innumerable classical bionic products. The paper aims to discuss these issues.

Design/methodology/approach

All kinds of special abilities of insects and application status have been described and discussed in order to summarize the advanced research examples and supply bibliographic reference to the latters. Future perspectives and challenges in the use of insect bionics were also given.

Findings

In the period of life sciences and information sciences, insect bionics not only promoted the development of modern science and technology on the sides of mechanics, molecule, energy, information and control greatly but also provided new ideas and technologies for the crisis of science and technology, food, environment and ecosystem.

Originality/value

It may provide strategies to solve the problems and be a source of good ideas for researchers.

Article
Publication date: 21 July 2020

Joanne Pransky

The following paper is a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business and personal experience…

357

Abstract

Purpose

The following paper is a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business and personal experience of a prominent, robotic industry PhD-turned successful innovator and entrepreneur regarding the commercialization and challenges of bringing his technological inventions to market. This paper aims to discuss these issues.

Design/methodology/approach

Considered one of the top biomechatronics researchers in the world, Dr Hugh Herr heads the MIT Biomechatronics Research Group and Center for Extreme Bionics. His research programs seek to advance technologies that promise to accelerate the merging of body and machine, including device architectures that resemble the body’s musculoskeletal design, actuator technologies that behave like muscle and control methodologies that exploit principles of biological movement. Herr’s methods encompass a diverse set of scientific and technological disciplines that are advancing an emerging field of engineering science that applies principles of biomechanics and neural control to guide the designs of human rehabilitation and augmentative devices.

Findings

As a teenager, Herr was a highly competitive mountain climber until he had to have both legs amputated below the knees after suffering severe frostbite during a 1982 mountain expedition at the age of 17. As a result of this experience, he directed his efforts and talent to try to improve the mobility of people with disabilities. He graduated in physics in 1990 from the Millersville University (Pennsylvania). He subsequently earned a Master’s degree in Mechanical Engineering at the Massachusetts Institute of Technology (MIT) in 1993 and a PhD in Biophysics at Harvard University in 1998. He then was a postdoctoral fellow in medical devices at MIT. He was Assistant Professor at the Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School. Since 2000, he has been heading the MIT Biomechatronics Group within the Media Lab and has been Co-directing the Lab’s Center for Extreme Bionics since 2014. To bring his inventions to market, Herr founded a spin-off company out of MIT under the name iWalk in 2007, which was relaunched as BionX Medical Technologies Inc. in 2015, and acquired by Ottobock in 2017.

Originality/value

Herr is a world leader and inventor in the field of bionics and biomechanics whose research accomplishments have already made a significant impact on physically challenged people. Herr has produced several groundbreaking products, starting with a computer-controlled artificial knee in 2003, called the Rheo Knee System and commercialized by Össur Inc. He also designed his own bionic lower legs, the world’s first powered ankle-foot prosthesis to emulate the action of a biological leg and, for the first time, provides amputees with a natural gait. The Empower ankle system is now marketed by Ottobock. He is presently working on NeuroEmbodied Design methodology to restore proprioception to amputees. Herr has received major accolades including the Popular Mechanics Breakthrough Leadership Award (2005), the Heinz Award for Technology, the Economy and Employment (2007) and R&D Magazine’s 14th Innovator of the Year Award (2014) and a No Barriers Lifetime Achievement Award at the 2013 No Barriers Summit. His innovations were listed twice among TIME magazine’s Top Ten Inventions (2004; 2007) and which called him “Leader of the Bionic Age” in 2011. His life story has been told in the book Second Ascent: The Story of Hugh Herr (1991) and in the film Ascent: The Story of Hugh Herr, made in 2002 by National Geographic. He is the author and co-author of more than 150 peer-reviewed papers and patents.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 19 September 2008

The purpose of this paper is to give details about the winner and finalists of the 2008 Royal Academy of Engineering MacRobert Award.

239

Abstract

Purpose

The purpose of this paper is to give details about the winner and finalists of the 2008 Royal Academy of Engineering MacRobert Award.

Design/methodology/approach

The article discusses the winner and finalists of the Award in turn.

Findings

In winning the award, Touch Bionics beat off tough competition from three other finalists.

Originality/value

The award winning i‐LIMB Hand is a prosthetic device that looks and acts like a real human hand with five individually powered digits, heralding a new generation in bionics and patient care.

Details

Strategic Direction, vol. 24 no. 10
Type: Research Article
ISSN: 0258-0543

Keywords

Article
Publication date: 3 May 2016

Jia-Yen Huang and Shih-Tian Siao

This paper aims to propose an integrated bionic optimal design system to assist engineers in bionic design tasks. In this age of ecological awareness and sustainability, engineers…

Abstract

Purpose

This paper aims to propose an integrated bionic optimal design system to assist engineers in bionic design tasks. In this age of ecological awareness and sustainability, engineers are increasingly applying bionics to their product designs. A recent surge of research on bionics has presented new opportunities and challenges. To deal with these challenges, an integrated design system equipped with the capabilities of conducting biologically inspired design, solving technical contradictions, optimizing design parameters and verifying design effectiveness is required.

Design/methodology/approach

This study proposes a two-level analysis to help decision makers conduct multi-faceted observation and assessment on conceptual bionic design. The contradictions incurred when transferring biological principals to engineering design are solved using BioTRIZ, and the conceptual design is then created. This study conducts computer-aided engineering analysis, incorporating the Taguchi method and TOPSIS method, to obtain the optimal design of bionic products.

Findings

The proposed design process focuses on improving the product structure instead of changing the materials, and thus, the authors are able to put the goals of saving energy, environmental protection and sustainability into practice.

Practical implications

Through the design and analysis processes, the authors prove that their designed bionic-fan can effectively enhance operational efficiency and reduce the aerodynamic noise. The system can provide a practical tool for engineers intending to accomplish complete designs and verifications using bionics.

Originality/value

Most existing design methodologies that have attempted to combine biology with engineering design have fallen short in their level of thoroughness. This study proposes a complete bionic design system by integrating the processes of bionic-inspired design, optimization and verification.

Details

Journal of Engineering, Design and Technology, vol. 14 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 20 June 2008

Christine Connolly

The purpose of this paper is to study the innovative design of prosthetic hands now in production from a Scottish spin‐off company.

3108

Abstract

Purpose

The purpose of this paper is to study the innovative design of prosthetic hands now in production from a Scottish spin‐off company.

Design/methodology/approach

The novel features are described, followed by the details of the mechanical construction and the available grip patterns. The benefits of the modular design are explained, and the function and construction of a skin‐like covering are explored. The clinical network supporting the prosthesis is briefly outlined.

Findings

The design allows patients to achieve many functional and natural‐looking hand configurations from simple “open” and “close” signals. Miniature motors and gearboxes allow independent movement of each digit, and an integral microprocessor translates electric signals from the forearm to control the movements of the hand. Stall detection ensures that no finger exerts excessive force or wastes power. Artificial skin can be very realistic, with imitation fingernails, hairs and pores. The lifelike prosthesis helps the patient emotionally, socially and at work.

Originality/value

The paper shows how advances in motors, gearboxes, batteries and electronics have enabled a breakthrough in prosthetic design.

Details

Industrial Robot: An International Journal, vol. 35 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 29 December 2023

Sepehr Ghazinoory and Parvaneh Aghaei

This study aims to investigate the importance and effect of asymmetric technological collaborations’ key success factors in developing countries. The number of collaborations…

Abstract

Purpose

This study aims to investigate the importance and effect of asymmetric technological collaborations’ key success factors in developing countries. The number of collaborations between large enterprises and SMEs, known as asymmetric technological collaborations (ATC) is growing considerably. But this asymmetry in itself can increase the number and intensity of collaboration challenges. So far, limited studies have been conducted on the stability of ATCs, and most of them have been in the context of developed countries. Meanwhile, studying the strength and stability of collaboration in the nano industry with growing market value and increasing newcomers is of particular importance.

Design/methodology/approach

Here, with bionic engineering approach, we used chemistry for the first time to identify the main stability factors of ATCs and build our hypotheses and research model. To this end, we introduced the factors affecting the stability of the dative chemical bond as a bionic counterpart of corporate venture capital (CVC), which is a type of ATC, and proposed 4 hypotheses. We used structural equation modeling (SEM) with partial least squares (PLS) method to examine the hypothesized relationships.

Findings

The analysis of survey questionnaire data from 26 asymmetric collaborations in Iran’s nanotechnology industry shows that “learning of the acceptor company” with a negative effect, “network ties” and “development of the collaboration host region” with a positive effect and “diversity in the collaboration portfolio” with an inverted U-shaped effect are the most influential factors in the stability and continuity of CVCs, respectively.

Originality/value

The findings of this research can be the beginning of a broad path leading to exploring and getting inspiration from chemistry to analyze management issues.

Details

Journal of Business & Industrial Marketing, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0885-8624

Keywords

Article
Publication date: 1 August 1996

Simeon J. Mrchev

Presents research on human memory modelling. Gives a description of the memory process (as a whole) in its functional details by means of adding, processing and synthesizing…

Abstract

Presents research on human memory modelling. Gives a description of the memory process (as a whole) in its functional details by means of adding, processing and synthesizing psychological data using the creation of a model base. Compares the created psychological equivalent to the adequate mathematical‐algorithmic multi‐apparatus descriptions. Presents the programme‐developed human memory model as a precondition for microelectronic realizations (robot technique, computers and other bionic‐cybernetical systems).

Details

Kybernetes, vol. 25 no. 6
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 18 April 2022

Tamás Badics, Dániel Hajtó, Kálmán Tornai, Levente Kiss, István Zoltán Reguly, István Pesti, Péter Sváb and György Cserey

This paper aims to introduce a framework for optimizing rule-based anti-money laundering systems with a clear economic interpretation, and the authors introduce the integral…

Abstract

Purpose

This paper aims to introduce a framework for optimizing rule-based anti-money laundering systems with a clear economic interpretation, and the authors introduce the integral representation method.

Design/methodology/approach

By using a microeconomic model, the authors reformulate the threshold optimization problem as a decision problem to gain insights from economics regarding the main properties of the optimum. The authors used algorithmic considerations to find an efficient implementation by using a kind of weak mode estimate of the distribution and the authors extend this approach to classes of alerts or cases.

Findings

The method provides a new and efficient alternative for the sampling method or the multidimensional optimization technique described in the literature to decrease the bias emanating from multiple alerts by smoothing the number of alerts across classes in the optimum and decrease the overlapping between scenarios at the case level. Using the method for real bank data, the authors were able to decrease the number of false positives cases by about 18% while retaining almost 98% of the true-positive cases.

Research limitations/implications

The model assumes that alerts from different scenarios are indifferent to the bank. To include scenario-specific preferences or constraints demands further research.

Originality/value

The new framework presented in the paper is a flexible extension of the usual above-the-line method, which makes it possible to include bank preferences and use the parallelization capabilities of modern processors.

Details

Journal of Money Laundering Control, vol. 26 no. 2
Type: Research Article
ISSN: 1368-5201

Keywords

Article
Publication date: 11 June 2020

Siyang Gao, Bangcheng Zhang, Jianwei Sun and Wenrui Liu

The purpose of this paper is to design a biomimetic surface structure for use in a glass transport device to enhance the suspension lift of a glass transport unit.

Abstract

Purpose

The purpose of this paper is to design a biomimetic surface structure for use in a glass transport device to enhance the suspension lift of a glass transport unit.

Design/methodology/approach

This paper presents a surface structure of a suspended glass transport device based on the principle of bionics. First, a mapping model is constructed based on the wing structure. Second, the optimal structural parameters are given according to genetic algorithm optimization. Finally, the experimental comparison of the test bench verified the feasibility of the theory.

Findings

Through experimental comparison, the biomimetic suspension glass transport device saves 20% of air pressure compared with the ordinary suspended glass transport device, which verifies the effectiveness of the theoretical method.

Originality/value

This paper proposes a suspended glass transport device based on the principle of bionics, which saves the air pressure required for work. It is expected to be used in suspension glass transport devices.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-09-2019-0389/

Details

Industrial Lubrication and Tribology, vol. 72 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 237