Search results

1 – 10 of 70
Open Access
Article
Publication date: 28 April 2020

Alessandro Tufano, Riccardo Accorsi and Riccardo Manzini

This paper addresses the trade-off between asset investment and food safety in the design of a food catering production plant. It analyses the relationship between the quality…

1378

Abstract

Purpose

This paper addresses the trade-off between asset investment and food safety in the design of a food catering production plant. It analyses the relationship between the quality decay of cook-warm products, the logistics of the processes and the economic investment in production machines.

Design/methodology/approach

A weekly cook-warm production plan has been monitored on-field using temperature sensors to estimate the quality decay profile of each product. A multi-objective optimisation model is proposed to (1) minimise the number of resources necessary to perform cooking and packing operations or (2) to maximise the food quality of the products. A metaheuristic simulated annealing algorithm is introduced to solve the model and to identify the Pareto frontier of the problem.

Findings

The packaging buffers are identified as the bottleneck of the processes. The outcome of the algorithms highlights that a small investment to design bigger buffers results in a significant increase in the quality with a smaller food loss.

Practical implications

This study models the production tasks of a food catering facility to evaluate their criticality from a food safety perspective. It investigates the tradeoff between the investment cost of resources processing critical tasks and food safety of finished products.

Social implications

The methodology applies to the design of cook-warm production. Catering companies use cook-warm production to serve school, hospitals and companies. For this reason, the application of this methodology leads to the improvement of the quality of daily meals for a large number of people.

Originality/value

The paper introduces a new multi-objective function (asset investment vs food quality) proposing an original metaheuristic to address this tradeoff in the food catering industry. Also, the methodology is applied and validated in the design of a new food production facility.

Details

British Food Journal, vol. 122 no. 7
Type: Research Article
ISSN: 0007-070X

Keywords

Content available
Article
Publication date: 15 December 2017

Maxim A. Dulebenets

The volumes of international containerized trade substantially increased over the past years. In the meantime, marine container terminal (MCT) operators are facing congestion…

1116

Abstract

Purpose

The volumes of international containerized trade substantially increased over the past years. In the meantime, marine container terminal (MCT) operators are facing congestion issues at their terminals because of the increasing number of large-size vessels, the lack of innovative technologies and advanced handling equipment and the inability of proper scheduling of the available resources. This study aims to propose a novel memetic algorithm with a deterministic parameter control to facilitate the berth scheduling at MCTs and minimize the total vessel service cost.

Design/methodology/approach

A local search heuristic, which is based on the first-come-first-served policy, is applied at the chromosomes and population initialization stage within the developed memetic algorithm (MA). The deterministic parameter control strategy is implemented for a custom mutation operator, which alters the mutation rate values based on the piecewise function throughout the evolution of the algorithm. Performance of the proposed MA is compared with that of the alternative solution algorithms widely used in the berth scheduling literature, including a MA that does not apply the deterministic parameter control strategy, typical evolutionary algorithm, simulated annealing and variable neighborhood search.

Findings

Results demonstrate that the developed MA with a deterministic parameter control can obtain superior berth schedules in terms of the total vessel service cost within a reasonable computational time. Furthermore, greater cost savings are observed for the cases with high demand and low berthing capacity at the terminal. A comprehensive analysis of the convergence patterns indicates that introduction of the custom mutation operator with a deterministic control for the mutation rate value would provide more efficient exploration and exploitation of the search space.

Research limitations/implications

This study does not account for uncertainty in vessel arrivals. Furthermore, potential changes in the vessel handling times owing to terminal disruptions are not captured.

Practical implications

The developed solution algorithm can serve as an efficient planning tool for MCT operators and assist with efficient berth scheduling for both discrete and continuous berthing layout cases.

Originality/value

The majority of studies on berth scheduling rely on the stochastic search algorithms without considering the specific problem properties and applying the guided search heuristics. Unlike canonical evolutionary algorithms, the developed algorithm uses a local search heuristic for the chromosomes and population initialization and adjusts the mutation rate values based on a deterministic parameter control strategy for more efficient exploration and exploitation of the search space.

Details

Maritime Business Review, vol. 2 no. 4
Type: Research Article
ISSN: 2397-3757

Keywords

Open Access
Article
Publication date: 20 March 2023

Anirut Kantasa-ard, Tarik Chargui, Abdelghani Bekrar, Abdessamad AitElCadi and Yves Sallez

This paper proposes an approach to solve the vehicle routing problem with simultaneous pickup and delivery (VRPSPD) in the context of the Physical Internet (PI) supply chain. The…

Abstract

Purpose

This paper proposes an approach to solve the vehicle routing problem with simultaneous pickup and delivery (VRPSPD) in the context of the Physical Internet (PI) supply chain. The main objective is to minimize the total distribution costs (transportation cost and holding cost) to supply retailers from PI hubs.

Design/methodology/approach

Mixed integer programming (MIP) is proposed to solve the problem in smaller instances. A random local search (RLS) algorithm and a simulated annealing (SA) metaheuristic are proposed to solve larger instances of the problem.

Findings

The results show that SA provides the best solution in terms of total distribution cost and provides a good result regarding holding cost and transportation cost compared to other heuristic methods. Moreover, in terms of total carbon emissions, the PI concept proposed a better solution than the classical supply chain.

Research limitations/implications

The sustainability of the route construction applied to the PI is validated through carbon emissions.

Practical implications

This approach also relates to the main objectives of transportation in the PI context: reduce empty trips and share transportation resources between PI-hubs and retailers. The proposed approaches are then validated through a case study of agricultural products in Thailand.

Social implications

This approach is also relevant with the reduction of driving hours on the road because of share transportation results and shorter distance than the classical route planning.

Originality/value

This paper addresses the VRPSPD problem in the PI context, which is based on sharing transportation and storage resources while considering sustainability.

Details

Journal of International Logistics and Trade, vol. 21 no. 3
Type: Research Article
ISSN: 1738-2122

Keywords

Open Access
Article
Publication date: 25 January 2024

Atef Gharbi

The purpose of the paper is to propose and demonstrate a novel approach for addressing the challenges of path planning and obstacle avoidance in the context of mobile robots (MR)…

Abstract

Purpose

The purpose of the paper is to propose and demonstrate a novel approach for addressing the challenges of path planning and obstacle avoidance in the context of mobile robots (MR). The specific objectives and purposes outlined in the paper include: introducing a new methodology that combines Q-learning with dynamic reward to improve the efficiency of path planning and obstacle avoidance. Enhancing the navigation of MR through unfamiliar environments by reducing blind exploration and accelerating the convergence to optimal solutions and demonstrating through simulation results that the proposed method, dynamic reward-enhanced Q-learning (DRQL), outperforms existing approaches in terms of achieving convergence to an optimal action strategy more efficiently, requiring less time and improving path exploration with fewer steps and higher average rewards.

Design/methodology/approach

The design adopted in this paper to achieve its purposes involves the following key components: (1) Combination of Q-learning and dynamic reward: the paper’s design integrates Q-learning, a popular reinforcement learning technique, with dynamic reward mechanisms. This combination forms the foundation of the approach. Q-learning is used to learn and update the robot’s action-value function, while dynamic rewards are introduced to guide the robot’s actions effectively. (2) Data accumulation during navigation: when a MR navigates through an unfamiliar environment, it accumulates experience data. This data collection is a crucial part of the design, as it enables the robot to learn from its interactions with the environment. (3) Dynamic reward integration: dynamic reward mechanisms are integrated into the Q-learning process. These mechanisms provide feedback to the robot based on its actions, guiding it to make decisions that lead to better outcomes. Dynamic rewards help reduce blind exploration, which can be time-consuming and inefficient and promote faster convergence to optimal solutions. (4) Simulation-based evaluation: to assess the effectiveness of the proposed approach, the design includes a simulation-based evaluation. This evaluation uses simulated environments and scenarios to test the performance of the DRQL method. (5) Performance metrics: the design incorporates performance metrics to measure the success of the approach. These metrics likely include measures of convergence speed, exploration efficiency, the number of steps taken and the average rewards obtained during the robot’s navigation.

Findings

The findings of the paper can be summarized as follows: (1) Efficient path planning and obstacle avoidance: the paper’s proposed approach, DRQL, leads to more efficient path planning and obstacle avoidance for MR. This is achieved through the combination of Q-learning and dynamic reward mechanisms, which guide the robot’s actions effectively. (2) Faster convergence to optimal solutions: DRQL accelerates the convergence of the MR to optimal action strategies. Dynamic rewards help reduce the need for blind exploration, which typically consumes time and this results in a quicker attainment of optimal solutions. (3) Reduced exploration time: the integration of dynamic reward mechanisms significantly reduces the time required for exploration during navigation. This reduction in exploration time contributes to more efficient and quicker path planning. (4) Improved path exploration: the results from the simulations indicate that the DRQL method leads to improved path exploration in unknown environments. The robot takes fewer steps to reach its destination, which is a crucial indicator of efficiency. (5) Higher average rewards: the paper’s findings reveal that MR using DRQL receive higher average rewards during their navigation. This suggests that the proposed approach results in better decision-making and more successful navigation.

Originality/value

The paper’s originality stems from its unique combination of Q-learning and dynamic rewards, its focus on efficiency and speed in MR navigation and its ability to enhance path exploration and average rewards. These original contributions have the potential to advance the field of mobile robotics by addressing critical challenges in path planning and obstacle avoidance.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Content available
Article
Publication date: 15 June 2017

Ali Dadashi, Maxim A. Dulebenets, Mihalis M. Golias and Abdolreza Sheikholeslami

The paper aims to propose a new mathematical model for allocation and scheduling of vessels at multiple marine container terminals of the same port, considering the access channel…

1446

Abstract

Purpose

The paper aims to propose a new mathematical model for allocation and scheduling of vessels at multiple marine container terminals of the same port, considering the access channel depth variations by time of day.

Design/methodology/approach

This paper proposes a new mathematical model for allocation and scheduling of vessels at multiple marine container terminals of the same port, considering the access channel depth variations by time of day. The access channel serves as a gate for vessels entering or leaving the port. During low-depth tidal periods the vessels with deep drafts have to wait until the depth of the access channel reaches the required depth.

Findings

A number of numerical experiments are performed using the operational data collected from Port of Bandar Abbas (Iran). Results demonstrate that the suggested methodology is able to improve the existing port operations and significantly decrease delayed vessel departures.

Originality/value

The contribution of this study to the state of the art is a novel mathematical model for allocation and scheduling of vessels at multiple terminals of the same port, taking into consideration channel depth variations by time of day. To the best of the authors’ knowledge, this is the first continuous berth scheduling linear model that addresses the tidal effects on berth scheduling (both in terms of vessel arrival and departure at/from the berth) at multiple marine container terminals.

Details

Maritime Business Review, vol. 2 no. 2
Type: Research Article
ISSN: 2397-3757

Keywords

Open Access
Article
Publication date: 15 February 2024

Di Kang, Steven W. Kirkpatrick, Zhipeng Zhang, Xiang Liu and Zheyong Bian

Accurately estimating the severity of derailment is a crucial step in quantifying train derailment consequences and, thereby, mitigating its impacts. The purpose of this paper is…

Abstract

Purpose

Accurately estimating the severity of derailment is a crucial step in quantifying train derailment consequences and, thereby, mitigating its impacts. The purpose of this paper is to propose a simplified approach aimed at addressing this research gap by developing a physics-informed 1-D model. The model is used to simulate train dynamics through a time-stepping algorithm, incorporating derailment data after the point of derailment.

Design/methodology/approach

In this study, a simplified approach is adopted that applies a 1-D kinematic analysis with data obtained from various derailments. These include the length and weight of the rail cars behind the point of derailment, the train braking effects, derailment blockage forces, the grade of the track and the train rolling and aerodynamic resistance. Since train braking/blockage effects and derailment blockage forces are not always available for historical or potential train derailment, it is also necessary to fit the historical data and find optimal parameters to estimate these two variables. Using these fitted parameters, a detailed comparison can be performed between the physics-informed 1-D model and previous statistical models to predict the derailment severity.

Findings

The results show that the proposed model outperforms the Truncated Geometric model (the latest statistical model used in prior research) in estimating derailment severity. The proposed model contributes to the understanding and prevention of train derailments and hazmat release consequences, offering improved accuracy for certain scenarios and train types

Originality/value

This paper presents a simplified physics-informed 1-D model, which could help understand the derailment mechanism and, thus, is expected to estimate train derailment severity more accurately for certain scenarios and train types compared with the latest statistical model. The performance of the braking response and the 1-D model is verified by comparing known ride-down profiles with estimated ones. This validation process ensures that both the braking response and the 1-D model accurately represent the expected behavior.

Details

Smart and Resilient Transportation, vol. 6 no. 1
Type: Research Article
ISSN: 2632-0487

Keywords

Open Access
Article
Publication date: 7 March 2018

Natasha Ramluckun and Vandana Bassoo

With the increasing acclaim of Wireless Sensor Networks and its diverse applications, research has been directed into optimising and prolonging the network lifetime. Energy…

Abstract

With the increasing acclaim of Wireless Sensor Networks and its diverse applications, research has been directed into optimising and prolonging the network lifetime. Energy efficiency has been a critical factor due to the energy resource impediment of batteries in sensor nodes. The proposed routing algorithm therefore aims at extending lifetime of sensors by enhancing load distribution in the network. The scheme is based on the chain-based routing technique of the PEGASIS (Power Energy GAthering in Sensor Information Systems) protocol and uses Ant Colony Optimisation to obtain the optimal chain. The contribution of the proposed work is the integration of the clustering method to PEGASIS with Ant Colony Optimisation to reduce redundancy of data, neighbour nodes distance and transmission delay associated with long links, and the employment an appropriate cluster head selection method. Simulation results indicates proposed method’s superiority in terms of residual energy along with considerable improvement regarding network lifetime, and significant reduction in delay when compared with existing PEGASIS protocol and optimised PEG-ACO chain respectively.

Details

Applied Computing and Informatics, vol. 16 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Content available
Article
Publication date: 1 October 2003

T.T. Goh

345

Abstract

Details

Online Information Review, vol. 27 no. 5
Type: Research Article
ISSN: 1468-4527

Keywords

Open Access
Article
Publication date: 5 June 2023

Elias Shohei Kamimura, Anderson Rogério Faia Pinto and Marcelo Seido Nagano

This paper aims to present a literature review of the most recent optimisation methods applied to Credit Scoring Models (CSMs).

2516

Abstract

Purpose

This paper aims to present a literature review of the most recent optimisation methods applied to Credit Scoring Models (CSMs).

Design/methodology/approach

The research methodology employed technical procedures based on bibliographic and exploratory analyses. A traditional investigation was carried out using the Scopus, ScienceDirect and Web of Science databases. The papers selection and classification took place in three steps considering only studies in English language and published in electronic journals (from 2008 to 2022). The investigation led up to the selection of 46 publications (10 presenting literature reviews and 36 proposing CSMs).

Findings

The findings showed that CSMs are usually formulated using Financial Analysis, Machine Learning, Statistical Techniques, Operational Research and Data Mining Algorithms. The main databases used by the researchers were banks and the University of California, Irvine. The analyses identified 48 methods used by CSMs, the main ones being: Logistic Regression (13%), Naive Bayes (10%) and Artificial Neural Networks (7%). The authors conclude that advances in credit score studies will require new hybrid approaches capable of integrating Big Data and Deep Learning algorithms into CSMs. These algorithms should have practical issues considered consider practical issues for improving the level of adaptation and performance demanded for the CSMs.

Practical implications

The results of this study might provide considerable practical implications for the application of CSMs. As it was aimed to demonstrate the application of optimisation methods, it is highly considerable that legal and ethical issues should be better adapted to CSMs. It is also suggested improvement of studies focused on micro and small companies for sales in instalment plans and commercial credit through the improvement or new CSMs.

Originality/value

The economic reality surrounding credit granting has made risk management a complex decision-making issue increasingly supported by CSMs. Therefore, this paper satisfies an important gap in the literature to present an analysis of recent advances in optimisation methods applied to CSMs. The main contribution of this paper consists of presenting the evolution of the state of the art and future trends in studies aimed at proposing better CSMs.

Details

Journal of Economics, Finance and Administrative Science, vol. 28 no. 56
Type: Research Article
ISSN: 2077-1886

Keywords

Open Access
Article
Publication date: 10 May 2022

Yuhan Liu, Linhong Wang, Ziling Zeng and Yiming Bie

The purpose of this study is to develop an optimization method for charging plans with the implementation of time-of-day (TOD) electricity tariff, to reduce electricity bill.

Abstract

Purpose

The purpose of this study is to develop an optimization method for charging plans with the implementation of time-of-day (TOD) electricity tariff, to reduce electricity bill.

Design/methodology/approach

Two optimization models for charging plans respectively with fixed and stochastic trip travel times are developed, to minimize the electricity costs of daily operation of an electric bus. The charging time is taken as the optimization variable. The TOD electricity tariff is considered, and the energy consumption model is developed based on real operation data. An optimal charging plan provides charging times at bus idle times in operation hours during the whole day (charging time is 0 if the bus is not get charged at idle time) which ensure the regular operation of every trip served by this bus.

Findings

The electricity costs of the bus route can be reduced by applying the optimal charging plans.

Originality/value

This paper produces a viable option for transit agencies to reduce their operation costs.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

1 – 10 of 70