Search results

1 – 10 of over 36000
Article
Publication date: 2 March 2022

Yuki Hidaka

The purpose of this paper is to develop a multi-material topology optimization method for permanent magnet-assisted synchronous reluctance motors.

Abstract

Purpose

The purpose of this paper is to develop a multi-material topology optimization method for permanent magnet-assisted synchronous reluctance motors.

Design/methodology/approach

In the proposed method, the optimization procedure consists of two steps. In the first step, the entire rotor area was selected for the design region and the distribution of the core and air materials was optimized. In the second step, the design region was limited to the air region of the former solution and the distribution of magnets and cores or magnets and air was optimized.

Findings

Because of the two-step process of the proposed method, the design parameters can be reduced compared to the conventional method. As a result, this study can prevent the solution space from becoming more complex and superior solutions can be founded effectively.

Research limitations/implications

Since limited case study is denoted in this paper, much more case studies, for example, three-dimensional optimization problems, are needed to be discussed.

Practical implications

The optimal solutions obtained by the proposed method have a smaller magnet volume and higher average torque than that of the conventional method.

Originality/value

In the proposed methods, optimization methodology, which consists of two-steps process, is differed from the conventional method.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 28 October 2014

Yuki Hidaka, Takahiro Sato, Kota Watanabe and Hajime Igarashi

Conventional level-set method tends to fall into local optima because optimization is conducted based on gradient method. The purpose of this paper is to develop a novel topology…

Abstract

Purpose

Conventional level-set method tends to fall into local optima because optimization is conducted based on gradient method. The purpose of this paper is to develop a novel topology optimization in which simulated annealing (SA) is introduced to overcome the difficulties in level-set method.

Design/methodology/approach

Level-set based topology optimization for two-dimensional optimization problem.

Findings

It is shown in the numerical examples, where conventional and present methods are applied to shape optimization of ferrite inductor and Interior Permanent Magnetic (IPM)-motor, the present method can find solutions with better performance than those obtained by the conventional method.

Originality/value

SA is introduced to improve the search performances of level-set method.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 28 October 2014

Alexander Zemliak

The purpose of this paper is to define the process of analog circuit optimization on the basis of the control theory application. This approach produces many different strategies…

Abstract

Purpose

The purpose of this paper is to define the process of analog circuit optimization on the basis of the control theory application. This approach produces many different strategies of optimization and determines the problem of searching of the best strategy in sense of minimal computer time. The determining of the best strategy of optimization and a searching of possible structure of this strategy with a minimal computer time is a principal aim of this work.

Design/methodology/approach

Different kinds of strategies for circuit optimization have been evaluated from the point of view of operations’ number. The generalized methodology for the optimization of analog circuit was formulated by means of the optimum control theory. The main equations for this methodology were elaborated. These equations include the special control functions that are introduced artificially. This approach generalizes the problem and generates an infinite number of different strategies of optimization. A problem of construction of the best algorithm of optimization is defined as a typical problem of the control theory. Numerical results show the possibility of application of this approach for optimization of electronic circuits and demonstrate the efficiency and perspective of the proposed methodology.

Findings

Examples show that the better optimization strategies that are appeared in limits of developed approach have a significant time gain with respect to the traditional strategy. The time gain increases when the size and the complexity of the optimized circuit are increasing. An additional acceleration effect was used to improve the properties of presented optimization process.

Originality/value

The obtained results show the perspectives of new approach for circuit optimization. A large set of various strategies of circuit optimization serves as a basis for searching the better strategies with a minimum computer time. The gain in processor time for the best strategy reaches till several thousands in comparison with traditional approach.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 June 2021

Luis Lisandro Lopez Taborda, Heriberto Maury and Jovanny Pacheco

There are many investigations in design methodologies, but there are also divergences and convergences as there are so many points of view. This study aims to evaluate to…

1141

Abstract

Purpose

There are many investigations in design methodologies, but there are also divergences and convergences as there are so many points of view. This study aims to evaluate to corroborate and deepen other researchers’ findings, dissipate divergences and provide directing to future work on the subject from a methodological and convergent perspective.

Design/methodology/approach

This study analyzes the previous reviews (about 15 reviews) and based on the consensus and the classifications provided by these authors, a significant sample of research is analyzed in the design for additive manufacturing (DFAM) theme (approximately 80 articles until June of 2017 and approximately 280–300 articles until February of 2019) through descriptive statistics, to corroborate and deepen the findings of other researchers.

Findings

Throughout this work, this paper found statistics indicating that the main areas studied are: multiple objective optimizations, execution of the design, general DFAM and DFAM for functional performance. Among the main conclusions: there is a lack of innovation in the products developed with the methodologies, there is a lack of exhaustivity in the methodologies, there are few efforts to include environmental aspects in the methodologies, many of the methods include economic and cost evaluation, but are not very explicit and broad (sustainability evaluation), it is necessary to consider a greater variety of functions, among other conclusions

Originality/value

The novelty in this study is the methodology. It is very objective, comprehensive and quantitative. The starting point is not the case studies nor the qualitative criteria, but the figures and quantities of methodologies. The main contribution of this review article is to guide future work on the subject from a methodological and convergent perspective and this article provides a broad database with articles containing information on many issues to make decisions: design methodology; optimization; processes, selection of parts and materials; cost and product management; mechanical, electrical and thermal properties; health and environmental impact, etc.

Details

Rapid Prototyping Journal, vol. 27 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 June 2000

P.Di Barba

Introduces papers from this area of expertise from the ISEF 1999 Proceedings. States the goal herein is one of identifying devices or systems able to provide prescribed…

Abstract

Introduces papers from this area of expertise from the ISEF 1999 Proceedings. States the goal herein is one of identifying devices or systems able to provide prescribed performance. Notes that 18 papers from the Symposium are grouped in the area of automated optimal design. Describes the main challenges that condition computational electromagnetism’s future development. Concludes by itemizing the range of applications from small activators to optimization of induction heating systems in this third chapter.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 20 March 2017

Recep M. Gorguluarslan, Umesh N. Gandhi, Yuyang Song and Seung-Kyum Choi

Methods to optimize lattice structure design, such as ground structure optimization, have been shown to be useful when generating efficient design concepts with complex truss-like…

1661

Abstract

Purpose

Methods to optimize lattice structure design, such as ground structure optimization, have been shown to be useful when generating efficient design concepts with complex truss-like cellular structures. Unfortunately, designs suggested by lattice structure optimization methods are often infeasible because the obtained cross-sectional parameter values cannot be fabricated by additive manufacturing (AM) processes, and it is often very difficult to transform a design proposal into one that can be additively designed. This paper aims to propose an improved, two-phase lattice structure optimization framework that considers manufacturing constraints for the AM process.

Design/methodology/approach

The proposed framework uses a conventional ground structure optimization method in the first phase. In the second phase, the results from the ground structure optimization are modified according to the pre-determined manufacturing constraints using a second optimization procedure. To decrease the computational cost of the optimization process, an efficient gradient-based optimization algorithm, namely, the method of feasible directions (MFDs), is integrated into this framework. The developed framework is applied to three different design examples. The efficacy of the framework is compared to that of existing lattice structure optimization methods.

Findings

The proposed optimization framework provided designs more efficiently and with better performance than the existing optimization methods.

Practical implications

The proposed framework can be used effectively for optimizing complex lattice-based structures.

Originality/value

An improved optimization framework that efficiently considers the AM constraints was reported for the design of lattice-based structures.

Details

Rapid Prototyping Journal, vol. 23 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 17 October 2018

Zhe Yuan, Shihui Huo and Jianting Ren

Computational efficiency is always the major concern in aircraft design. The purpose of this research is to investigate an efficient jig-shape optimization design method. A new…

Abstract

Purpose

Computational efficiency is always the major concern in aircraft design. The purpose of this research is to investigate an efficient jig-shape optimization design method. A new jig-shape optimization method is presented in the current study and its application on the high aspect ratio wing is discussed.

Design/methodology/approach

First, the effects of bending and torsion on aerodynamic distribution were discussed. The effect of bending deformation was equivalent to the change of attack angle through a new equivalent method. The equivalent attack angle showed a linear dependence on the quadratic function of bending. Then, a new jig-shape optimization method taking integrated structural deformation into account was proposed. The method was realized by four substeps: object decomposition, optimization design, inversion and evaluation.

Findings

After the new jig-shape optimization design, both aerodynamic distribution and structural configuration have satisfactory results. Meanwhile, the method takes both bending and torsion deformation into account.

Practical implications

The new jig-shape optimization method can be well used for the high aspect ratio wing.

Originality/value

The new method is an innovation based on the traditional single parameter design method. It is suitable for engineering application.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Book part
Publication date: 5 October 2018

Nima Gerami Seresht, Rodolfo Lourenzutti, Ahmad Salah and Aminah Robinson Fayek

Due to the increasing size and complexity of construction projects, construction engineering and management involves the coordination of many complex and dynamic processes and…

Abstract

Due to the increasing size and complexity of construction projects, construction engineering and management involves the coordination of many complex and dynamic processes and relies on the analysis of uncertain, imprecise and incomplete information, including subjective and linguistically expressed information. Various modelling and computing techniques have been used by construction researchers and applied to practical construction problems in order to overcome these challenges, including fuzzy hybrid techniques. Fuzzy hybrid techniques combine the human-like reasoning capabilities of fuzzy logic with the capabilities of other techniques, such as optimization, machine learning, multi-criteria decision-making (MCDM) and simulation, to capitalise on their strengths and overcome their limitations. Based on a review of construction literature, this chapter identifies the most common types of fuzzy hybrid techniques applied to construction problems and reviews selected papers in each category of fuzzy hybrid technique to illustrate their capabilities for addressing construction challenges. Finally, this chapter discusses areas for future development of fuzzy hybrid techniques that will increase their capabilities for solving construction-related problems. The contributions of this chapter are threefold: (1) the limitations of some standard techniques for solving construction problems are discussed, as are the ways that fuzzy methods have been hybridized with these techniques in order to address their limitations; (2) a review of existing applications of fuzzy hybrid techniques in construction is provided in order to illustrate the capabilities of these techniques for solving a variety of construction problems and (3) potential improvements in each category of fuzzy hybrid technique in construction are provided, as areas for future research.

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Keywords

Article
Publication date: 5 March 2018

Xiwen Cai, Haobo Qiu, Liang Gao, Xiaoke Li and Xinyu Shao

This paper aims to propose hybrid global optimization based on multiple metamodels for improving the efficiency of global optimization.

Abstract

Purpose

This paper aims to propose hybrid global optimization based on multiple metamodels for improving the efficiency of global optimization.

Design/methodology/approach

The method has fully utilized the information provided by different metamodels in the optimization process. It not only imparts the expected improvement criterion of kriging into other metamodels but also intelligently selects appropriate metamodeling techniques to guide the search direction, thus making the search process very efficient. Besides, the corresponding local search strategies are also put forward to further improve the optimizing efficiency.

Findings

To validate the method, it is tested by several numerical benchmark problems and applied in two engineering design optimization problems. Moreover, an overall comparison between the proposed method and several other typical global optimization methods has been made. Results show that the global optimization efficiency of the proposed method is higher than that of the other methods for most situations.

Originality/value

The proposed method sufficiently utilizes multiple metamodels in the optimizing process. Thus, good optimizing results are obtained, showing great applicability in engineering design optimization problems which involve costly simulations.

Details

Engineering Computations, vol. 35 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 18 April 2016

Yunlong Tang and Yaoyao Fiona Zhao

This paper aims to provide a comprehensive review of the state-of–the-art design methods for additive manufacturing (AM) technologies to improve functional performance.

3215

Abstract

Purpose

This paper aims to provide a comprehensive review of the state-of–the-art design methods for additive manufacturing (AM) technologies to improve functional performance.

Design/methodology/approach

In this survey, design methods for AM to improve functional performance are divided into two main groups. They are design methods for a specific objective and general design methods. Design methods in the first group primarily focus on the improvement of functional performance, while the second group also takes other important factors such as manufacturability and cost into consideration with a more general framework. Design methods in each groups are carefully reviewed with discussion and comparison.

Findings

The advantages and disadvantages of different design methods for AM are discussed in this paper. Some general issues of existing methods are summarized below: most existing design methods only focus on a single design scale with a single function; few product-level design methods are available for both products’ functionality and assembly; and some existing design methods are hard to implement for the lack of suitable computer-aided design software.

Practical implications

This study is a useful source for designers to select an appropriate design method to take full advantage of AM.

Originality/value

In this survey, a novel classification method is used to categorize existing design methods for AM. Based on this classification method, a comprehensive review is provided in this paper as an informative source for designers and researchers working in this field.

Details

Rapid Prototyping Journal, vol. 22 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 36000