Search results

1 – 10 of over 1000
Content available
Article
Publication date: 3 December 2019

Masoud Kavoosi, Maxim A. Dulebenets, Olumide Abioye, Junayed Pasha, Oluwatosin Theophilus, Hui Wang, Raphael Kampmann and Marko Mikijeljević

Marine transportation has been faced with an increasing demand for containerized cargo during the past decade. Marine container terminals (MCTs), as the facilities for connecting…

1557

Abstract

Purpose

Marine transportation has been faced with an increasing demand for containerized cargo during the past decade. Marine container terminals (MCTs), as the facilities for connecting seaborne and inland transportation, are expected to handle the increasing amount of containers, delivered by vessels. Berth scheduling plays an important role for the total throughput of MCTs as well as the overall effectiveness of the MCT operations. This study aims to propose a novel island-based metaheuristic algorithm to solve the berth scheduling problem and minimize the total cost of serving the arriving vessels at the MCT.

Design/methodology/approach

A universal island-based metaheuristic algorithm (UIMA) was proposed in this study, aiming to solve the spatially constrained berth scheduling problem. The UIMA population was divided into four sub-populations (i.e. islands). Unlike the canonical island-based algorithms that execute the same metaheuristic on each island, four different population-based metaheuristics are adopted within the developed algorithm to search the islands, including the following: evolutionary algorithm (EA), particle swarm optimization (PSO), estimation of distribution algorithm (EDA) and differential evolution (DE). The adopted population-based metaheuristic algorithms rely on different operators, which facilitate the search process for superior solutions on the UIMA islands.

Findings

The conducted numerical experiments demonstrated that the developed UIMA algorithm returned near-optimal solutions for the small-size problem instances. As for the large-size problem instances, UIMA was found to be superior to the EA, PSO, EDA and DE algorithms, which were executed in isolation, in terms of the obtained objective function values at termination. Furthermore, the developed UIMA algorithm outperformed various single-solution-based metaheuristic algorithms (including variable neighborhood search, tabu search and simulated annealing) in terms of the solution quality. The maximum UIMA computational time did not exceed 306 s.

Research limitations/implications

Some of the previous berth scheduling studies modeled uncertain vessel arrival times and/or handling times, while this study assumed the vessel arrival and handling times to be deterministic.

Practical implications

The developed UIMA algorithm can be used by the MCT operators as an efficient decision support tool and assist with a cost-effective design of berth schedules within an acceptable computational time.

Originality/value

A novel island-based metaheuristic algorithm is designed to solve the spatially constrained berth scheduling problem. The proposed island-based algorithm adopts several types of metaheuristic algorithms to cover different areas of the search space. The considered metaheuristic algorithms rely on different operators. Such feature is expected to facilitate the search process for superior solutions.

Article
Publication date: 20 February 2019

BaoZhuang Sun, Wenju Liao, Zhong Li, Zhiyong Liu and Cuiwei Du

To study the corrosion behavior of pipeline steel in coastal areas, a tidal seawater macro-cell corrosion device was built using a cycle soaking tank and a macro-cell corrosion…

Abstract

Purpose

To study the corrosion behavior of pipeline steel in coastal areas, a tidal seawater macro-cell corrosion device was built using a cycle soaking tank and a macro-cell corrosion facility to simulate the corrosion behavior of pipeline steel in a simulated coastal environment (dry and wet alternations during seawater-soil corrosion macro-cell processes).

Design/methodology/approach

The corrosion behaviors were studied via the weight loss method, electrochemical methods and morphological observations on corrosion.

Findings

The results show that during the initial stage of tidal seawater/soil macro-cell corrosion process of the X65 steel, the working electrode on the seawater side is the anode of the macro-battery. As corrosion progresses, the anode and the cathode of the macro-battery become inverted. As the area ratio and the dry – wet ratio increase, the time of anode and cathode inversion shortens. Galvanic current density decreases as the dry – wet ratio increases and increases as the area ratio increases. The corrosion process of macro-cell is affected by the reversal of anode and cathode. After the reversal of anode and cathode, the corrosion rate is mainly controlled by dry – wet alternating corrosion.

Originality/value

The corrosion behavior of a pipeline steel in a coastal environment was studied using a tidal seawater macro-cell corrosion device. The synergism effect between the tidal seawater and seawater-soil macro-cell on corrosion behavior was clarified.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 5 February 2018

Siddharth Kulkarni, Craig Chapman, Hanifa Shah, Erika Anneli Parn and David John Edwards

This paper aims to conduct a comprehensive literature review in the tidal energy physics, the ocean environment, hydrodynamics of horizontal axis tidal turbines and bio-mimicry.

Abstract

Purpose

This paper aims to conduct a comprehensive literature review in the tidal energy physics, the ocean environment, hydrodynamics of horizontal axis tidal turbines and bio-mimicry.

Design/methodology/approach

The paper provides an insight of the tidal turbine blade design and need for renewable energy sources to generate electricity through clean energy sources and less CO2 emission. The ocean environment, along with hydrodynamic design principles of a horizontal axis tidal turbine blade, is described, including theoretical maximum efficiency, blade element momentum theory and non-dimensional forces acting on tidal turbine blades.

Findings

This review gives an overview of fish locomotion identifying the attributes of the swimming like lift-based thrust propulsion, the locomotion driving factors: dorsal fins, caudal fins in propulsion, which enable the fish to be efficient even at low tidal velocities.

Originality/value

Finally, after understanding the phenomenon of caudal fin propulsion and its relationship with tidal turbine blade hydrodynamics, this review focuses on the implications of bio-mimicking a curved caudal fin to design an efficient horizontal axis tidal turbine.

Details

Journal of Engineering, Design and Technology, vol. 16 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 23 April 2018

Siddharth Suhas Kulkarni, Craig Chapman, Hanifa Shah and David John Edwards

The purpose of this paper is to conduct a comparative analysis between a straight blade (SB) and a curved caudal-fin tidal turbine blade (CB) and to examine the aspects relating…

Abstract

Purpose

The purpose of this paper is to conduct a comparative analysis between a straight blade (SB) and a curved caudal-fin tidal turbine blade (CB) and to examine the aspects relating to geometry, turbulence modelling, non-dimensional forces lift and power coefficients.

Design/methodology/approach

The comparison utilises results obtained from a default horizontal axis tidal turbine with turbine models available from the literature. A computational design method was then developed and implemented for “horizontal axis tidal turbine blade”. Computational fluid dynamics (CFD) results for the blade design are presented in terms of lift coefficient distribution at mid-height blades, power coefficients and blade surface pressure distributions. Moving the CB back towards the SB ensures that the total blade height stays constant for all geometries. A 3D mesh independency study of a “straight blade horizontal axis tidal turbine blade” modelled using CFD was carried out. The grid convergence study was produced by employing two turbulence models, the standard k-ε model and shear stress transport (SST) in ANSYS CFX. Three parameters were investigated: mesh resolution, turbulence model, and power coefficient in the initial CFD, analysis.

Findings

It was found that the mesh resolution and the turbulence model affect the power coefficient results. The power coefficients obtained from the standard k-ε model are 15 to 20 per cent lower than the accuracy of the SST model. Further analysis was performed on both the designed blades using ANSYS CFX and SST turbulence model. The variation in pressure distributions yields to the varying lift coefficient distribution across blade spans. The lift coefficient reached its peak between 0.75 and 0.8 of the blade span where the total lift accelerates with increasing pressure before drastically dropping down at 0.9 onwards due to the escalating rotational velocity of the blades.

Originality/value

The work presents a computational design methodological approach that is entirely original. While this numerical method has proven to be accurate and robust for many traditional tidal turbines, it has now been verified further for CB tidal turbines.

Details

International Journal of Building Pathology and Adaptation, vol. 36 no. 2
Type: Research Article
ISSN: 2398-4708

Keywords

Content available
Article
Publication date: 15 June 2017

Ali Dadashi, Maxim A. Dulebenets, Mihalis M. Golias and Abdolreza Sheikholeslami

The paper aims to propose a new mathematical model for allocation and scheduling of vessels at multiple marine container terminals of the same port, considering the access channel…

1442

Abstract

Purpose

The paper aims to propose a new mathematical model for allocation and scheduling of vessels at multiple marine container terminals of the same port, considering the access channel depth variations by time of day.

Design/methodology/approach

This paper proposes a new mathematical model for allocation and scheduling of vessels at multiple marine container terminals of the same port, considering the access channel depth variations by time of day. The access channel serves as a gate for vessels entering or leaving the port. During low-depth tidal periods the vessels with deep drafts have to wait until the depth of the access channel reaches the required depth.

Findings

A number of numerical experiments are performed using the operational data collected from Port of Bandar Abbas (Iran). Results demonstrate that the suggested methodology is able to improve the existing port operations and significantly decrease delayed vessel departures.

Originality/value

The contribution of this study to the state of the art is a novel mathematical model for allocation and scheduling of vessels at multiple terminals of the same port, taking into consideration channel depth variations by time of day. To the best of the authors’ knowledge, this is the first continuous berth scheduling linear model that addresses the tidal effects on berth scheduling (both in terms of vessel arrival and departure at/from the berth) at multiple marine container terminals.

Details

Maritime Business Review, vol. 2 no. 2
Type: Research Article
ISSN: 2397-3757

Keywords

Book part
Publication date: 13 August 2014

Tarun Kumar Mondal

Sundarban is the largest active delta in the world lying at the estuaries of the Rivers Ganga and Brahmaputra. This region is rich in biodiversity and declared World Heritage Site

Abstract

Sundarban is the largest active delta in the world lying at the estuaries of the Rivers Ganga and Brahmaputra. This region is rich in biodiversity and declared World Heritage Site by UNESCO. This delta region is prone to severe natural disasters as well as man-induced catastrophic events. Gosaba Block which is identified as the study area located in Indian part of the Sundarban delta, in South Twenty Four Parganas district of West Bengal puts forward an ideal portrait for people’s struggle and survival strategies against natural disasters. An attempt has been made in this chapter to study the perception of the main occupational groups on the effects of major natural disasters viz. floods, tidal surges and cyclones in Gosaba Block. An endeavor has also been made to explore local survival strategies which are effective for their sustenance in this vulnerable region. Three-hundred persons from different occupational groups, that is, people engaged in agriculture, fishing, crab collection, tiger prawn seed collection, wood collection and honey collection have been surveyed through a pre-designed questionnaire. Six Focus Group Discussions have been conducted, in which each of the groups comprised six members from a particular occupation. The study has revealed that all the occupational groups perceive threats differently from natural disasters and their perceptions vary according to their levels of exposure to the environment. To cope with the natural disasters, each occupational group has devised distinct survival strategies. For proper management of natural disasters in Sundarban delta region, the perception of people with different livelihoods and their survival strategies should be incorporated.

Details

Risks and Conflicts: Local Responses to Natural Disasters
Type: Book
ISBN: 978-1-78190-821-1

Keywords

Article
Publication date: 28 August 2019

Hoseyn A. Amiri, Rouzbeh Shafaghat, Rezvan Alamian, Seyed Mohamad Taheri and Mostafa Safdari Shadloo

The purpose of this paper is to design, investigate and optimize a horizontal axis tidal turbine (HATT) using computer-aided numerical simulation and computational fluid dynamics…

Abstract

Purpose

The purpose of this paper is to design, investigate and optimize a horizontal axis tidal turbine (HATT) using computer-aided numerical simulation and computational fluid dynamics (CFD). This is the first step of research and development (R&D) for implementation in the Persian Gulf condition. To do so, suitable locations are reviewed. Then, the optimization is focused on determining the optimum fixed pitch angle (β) of a three-bladed HATT based on the widespread multiple reference frame (MRF) technique to calculate power and thrust coefficients at different operational rotating speeds.

Design/methodology/approach

To simplify the problem and reducing the computational costs due to cyclic symmetry only one blade, accordingly one-third of the whole computational domain is considered in the modeling. Due to flow’s nature involving rotating, separation and recirculation, a realizable κ-ε turbulence model with standard wall function is selected to capture flow characteristics influenced by the rotor and near the wall region. Simulations are conducted for two free-stream velocities, then compared with their dependencies through the dimensionless tip speed ratio (TSR) parameter.

Findings

The validation process of the simulations is carried out by the use of AeroDyn BEM code, which has been evaluated by comparing with two experimental data. As results, the highest coefficient of power is achieved at ß = 19.3° at TSR = 4 with the value around 0.41 and 0.816 for thrust coefficient. Furthermore, to comprehend the rotor’s performance and simulation method, flow characteristics due to the rise in angular velocity is discussed in detail. Moreover, the major phenomenon, cavitation occurrence, is also checked at the critical situation where it is found to be safe.

Originality/value

By comparing and evaluating the results to other HATTs, it implies that the proposed rotor of this study is feasible and proved by CFD evaluation at this step. However, the current rotor is awaiting a justification through experimental assessment.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 31 August 2022

Mahdi Nazarieh, Hamed Kariman and Siamak Hoseinzadeh

This study aims to simulate Hunter turbine in Computer Forensic Examiner (CFX) environment dynamically. For this purpose, the turbine is designed in desired dimensions and…

Abstract

Purpose

This study aims to simulate Hunter turbine in Computer Forensic Examiner (CFX) environment dynamically. For this purpose, the turbine is designed in desired dimensions and simulated in ANSYS software under a specific fluid flow rate. The obtained values were then compared with previous studies for different values of angles (θ and α). The amount of validation error were obtained.

Design/methodology/approach

In this research, at first, the study of fluid flow and then the examination of that in the tidal turbine and identifying the turbines used for tidal energy extraction are performed. For this purpose, the equations governing flow and turbine are thoroughly investigated, and the computational fluid dynamic simulation is done after numerical modeling of Hunter turbine in a CFX environment.

Findings

The failure results showed; 11.25% for the blades to fully open, 2.5% for blades to start, and 2.2% for blades to close completely. Also, results obtained from three flow coefficients, 0.36, 0.44 and 0.46, are validated by experimental data that were in high-grade agreement, and the failure value coefficients of (0.44 and 0.46) equal (0.013 and 0.014), respectively.

Originality/value

In this research, at first, the geometry of the Hunter turbine is discussed. Then, the model of the turbine is designed with SolidWorks software. An essential feature of SolidWorks software, which was sorely needed in this project, is the possibility of mechanical clamping of the blades. The validation is performed by comparing the results with previous studies to show the simulation accuracy. This research’s overall objective is the dynamical simulation of Hunter turbine with the CFX. The turbine was then designed to desired dimensions and simulated in the ANSYS software at a specified fluid flow rate and verified, which had not been done so far.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 1999

Martin A. Wills, John C. Haley, Gene L. Fabian and R. Mark Bricka

Electrokinetics (EK) is an emerging remediation technology for the in situ removal of heavy metals, volatile organic compounds, and radionuclides from soils and sediments. Naval…

Abstract

Electrokinetics (EK) is an emerging remediation technology for the in situ removal of heavy metals, volatile organic compounds, and radionuclides from soils and sediments. Naval Air Weapons Station Point Mugu, California will host an EK technology demonstration. The demonstration will consist of installing and operating an EK system, which is engineered to remove cadmium and chromium from former electroplating waste lagoons. The selected site is adjacent to and encroaches on an environmentally sensitive salt marsh are for a federally protected wildlife. The electrokinetic process will be used to mobilize and extract heavy metals from the metals‐contaminated soil by applying a low amperage direct current across an array of electrodes placed in the contaminated soil. The demonstration will focus on the effectiveness of the EK process for removing heavy metals from the tidal marsh area. The EK demonstration will be used to collect cost‐effective data necessary to address both the technical and economic feasibility of using this technology in areas where soils are porous, water is brackish, and the system is susceptible to tidal influences.

Details

Environmental Management and Health, vol. 10 no. 1
Type: Research Article
ISSN: 0956-6163

Keywords

Book part
Publication date: 4 December 2012

Yusuke Noguchi, Rajarshi DasGupta and Rajib Shaw

Mangrove has the potential to adapt climate change threats like sea level rise, extreme high water events, and coastal erosions. The large stretched root systems of the mangrove…

Abstract

Mangrove has the potential to adapt climate change threats like sea level rise, extreme high water events, and coastal erosions. The large stretched root systems of the mangrove acts as a natural barrier to catch hold of the run off soil, leading to accretion of coastal areas. Due to human and other natural activities, mangroves in different parts of the world are being degraded. Citing examples from India, this chapter provides ways of unique mangrove comanagement system with the involvement of local communities, NGOs, and local governments.

Details

Ecosystem-Based Adaptation
Type: Book
ISBN: 978-1-78052-691-1

Keywords

1 – 10 of over 1000