Search results

1 – 10 of 183
Article
Publication date: 12 June 2017

Lei Cao, Yexiang Xiao, Zhengwei Wang, Yongyao Luo and Xiaoran Zhao

The purpose of this paper is to study the pressure fluctuation characteristics in the sidewall gaps of a centrifugal dredging pump in detail and discover the excitation sources.

Abstract

Purpose

The purpose of this paper is to study the pressure fluctuation characteristics in the sidewall gaps of a centrifugal dredging pump in detail and discover the excitation sources.

Design/methodology/approach

An unsteady numerical simulation with shear–stress transport–scale-adaptive simulation (SAS-SST) model was conducted for a centrifugal pump considering the sidewall gaps. The numerical codes were validated by a model test carried out in China Water Resources Beifang Investigation, Design and Research Co., Ltd. Fast Fourier transform was used to obtain the frequency components of the pressure fluctuation.

Findings

Pressure fluctuation characteristics inside the pump were analyzed for a condition near the design point. In the sidewall gaps, the circumferential, radial and axial distribution of the pressure fluctuation amplitude follow different laws. The non-axisymmetrical distribution of pressure fluctuation in the sidewall gaps shows that the unsteady flow in the volute casing which has a non-axisymmetrical geometry imposes an evident effect on the flow field in the sidewall gaps and the interaction between the main flow and the clearance flow cannot be neglected. There are several frequency components appearing as the dominant frequencies at different locations in the sidewall gaps, but the relatively stronger pressure fluctuations are all dominated by the rotating frequency. It indicates that the rotating impeller, which originally makes the shrouds rotate, is the primarily excitation source of the pressure fluctuations in the sidewall gaps.

Originality/value

The pressure fluctuation characteristics in the sidewall gaps of centrifugal pumps were first comprehensively analyzed. Unsteady flows in the sidewall gaps should be considered during the design and operation of centrifugal pumps.

Details

Engineering Computations, vol. 34 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 January 2015

Shian Li, Gongnan Xie and Bengt Sunden

The employment of continuous ribs in a passage involves a noticeable pressure drop penalty, while other studies have shown that truncated ribs may provide a potential to reduce…

Abstract

Purpose

The employment of continuous ribs in a passage involves a noticeable pressure drop penalty, while other studies have shown that truncated ribs may provide a potential to reduce the pressure drop while keeping a significant heat transfer enhancement. The purpose of this paper is to perform computer-aided simulations of turbulent flow and heat transfer of a rectangular cooling passage with continuous or truncated 45-deg V-shaped ribs on opposite walls.

Design/methodology/approach

Computational fluid dynamics technique is used to study the fluid flow and heat transfer characteristics in a three-dimensional rectangular passage with continuous and truncated V-shaped ribs.

Findings

The inlet Reynolds number, based on the hydraulic diameter, is ranged from 12,000 to 60,000 and a low-Re k-e model is selected for the turbulent computations. The local flow structure and heat transfer in the internal cooling passages are presented and the thermal performances of the ribbed passages are compared. It is found that the passage with truncated V-shaped ribs on opposite walls provides nearly equivalent heat transfer enhancement with a lower (about 17 percent at high Reynolds number of 60,000) pressure loss compared to a passage with continuous V-shaped ribs or continuous transversal ribs.

Research limitations/implications

The fluid is incompressible with constant thermophysical properties and the flow is steady. The passage is stationary.

Practical implications

New and additional data will be helpful in the design of ribbed passages to achieve a good thermal performance.

Originality/value

The results imply that truncated V-shaped ribs are very effective in improving the thermal performance and thus are suggested to be applied in gas turbine blade internal cooling, especially at high velocity or Reynolds number.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 1994

Richard Parrott

Examines the development of a new high speed rotating arc weldingsystem. Describes the rotation mechanism and looks at the characteristics andphenomena of this welding method…

218

Abstract

Examines the development of a new high speed rotating arc welding system. Describes the rotation mechanism and looks at the characteristics and phenomena of this welding method. Discusses the principles and performance of the arc sensor. Concludes that a six‐axis vertical multiple joints arc welding robot has been developed to meet the increasing high standards required of arc welding robots.

Details

Industrial Robot: An International Journal, vol. 21 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 18 November 2013

Liang Wang, Maarten Cauwe, Steven Brebels, Walter De Raedt and Jan Vanfleteren

Ultra-thin chip packaging (UTCP) is one of the flexible assembly technologies, by which thinned dies are encapsulated inside spin-coated dielectric films. For sake of higher…

Abstract

Purpose

Ultra-thin chip packaging (UTCP) is one of the flexible assembly technologies, by which thinned dies are encapsulated inside spin-coated dielectric films. For sake of higher density integration and bending stress suppression, two UTCPs can be stacked vertically. The purpose of this paper is to present an improved UTCP process flow to embed thinned chip in a symmetric dielectric sandwich for a flat topography. The UTCP flat top surface is suitable for metallization and further 3D stacking.

Design/methodology/approach

In the new process, a central photosensitive polyimide film is introduced, in which a cavity is made for the embedded chip. The cavity is defined by lithography using the chip itself as a photo-mask. In this way, the cavity size and position is self-aligned to the chip. The chip thickness is compensated by the surrounding central layer, and a UTCP with flat topography (flat UTCP) is realized after top dielectric deposition.

Findings

A batch of daisy chain test vehicles was produced. The feasibility of the process flow is verified by optical and electrical measurements. The result shows 100 percent yield, which is much better than previous work. A thermal humidity test showed no significant degradation of the flat UTCPs after 1,000 hours.

Originality/value

High yield fabrication of flat UTCP is first shown. An innovative self-alignment lithography step is introduced to make a cavity in dielectric for chip thickness compensation by using the chip itself as a photo-mask.

Details

Circuit World, vol. 39 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 18 May 2015

Wenhang Li, Yunhong Ji, Jing Wu and Jiayou Wang

The purpose of this paper is to provide a modified welding image feature extraction algorithm for rotating arc narrow gap metal active-gas welding (MAG) welding, which is…

Abstract

Purpose

The purpose of this paper is to provide a modified welding image feature extraction algorithm for rotating arc narrow gap metal active-gas welding (MAG) welding, which is significant for improving the accuracy and reliability of the welding process.

Design/methodology/approach

An infrared charge-coupled device (CCD) camera was utilized to obtain the welding image by passive vision. The left/right arc position was used as a triggering signal to capture the image when the arc is approaching left/right sidewall. Comparing with the conventional method, the authors’ sidewall detection method reduces the interference from arc; the median filter removes the welding spatter; and the size of the arc area was verified to reduce the reflection from welding pool. In addition, the frame loss was also considered in the authors’ method.

Findings

The modified welding image feature extraction method improves the accuracy and reliability of sidewall edge and arc position detection.

Practical implications

The algorithm can be applied to welding seam tracking and penetration control in rotating or swing arc narrow gap welding.

Originality/value

The modified welding image feature extraction method is robust to typical interference and, thus, can improve the accuracy and reliability of the detection of sidewall edge and arc position.

Details

Industrial Robot: An International Journal, vol. 42 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 16 March 2015

Wenhang Li, Jing Wu, Ting Hu and Feng Yang

This paper aim to build an information fusion model that can predict the bottom shape of welding groove for better welding quality control. Arc sensor is widely used in seam…

Abstract

Purpose

This paper aim to build an information fusion model that can predict the bottom shape of welding groove for better welding quality control. Arc sensor is widely used in seam tracking due to its simplicity and good accessibility, but it heavily relies on the bottom shape of the groove. It is necessary to identify the welding groove bottom state. Therefore, arc sensor information and vision sensing information were fused by the rough set (RS) method to predict the groove state, which will lay the foundation for better welding quality control.

Design/methodology/approach

First, a multi-sensor information system was established, which included an arc sensing component and a vision sensing component. For the arc sensing system, the current waveform in each rotating period was obtained and divided into 12 parts to calculate variables representing the variation of arc length. For the vision sensing system, images were obtained by passive vision when the arc was near the groove sidewall. The positions of the sidewall and the arc were calculated to get the weld deviation which was unrelated with the bottom groove state. Second, experimental data were generated by workpiece with various bottom shapes. At last, the RS method was adopted to fuse the arc sensing and the vision information, and a rule-based model with good prediction ability was obtained.

Findings

By fusing arc sensing and vision sensing information, an RS-based model was built to predict the welding groove state.

Originality/value

The RS modeling method was used to fuse arc sensing information and vision sensing information to build a model that predicts groove bottom state. The arc sensing information represented the arc length variation, while the vision sensing information contains the seam deviation which was unrelated with the bottom groove state. The RS model gives satisfactory prediction results and can be applied to weld quality control.

Details

Industrial Robot: An International Journal, vol. 42 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 26 August 2014

Chengdong Yang, Zhen Ye, Yuxi Chen, Jiyong Zhong and Shanben Chen

This paper aims to solve the problem that the changing of groove size and assembly gap would affect the precision of the multi-pass path planning and the welding quality and…

Abstract

Purpose

This paper aims to solve the problem that the changing of groove size and assembly gap would affect the precision of the multi-pass path planning and the welding quality and realize the automatic welding of a thick plate.

Design/methodology/approach

First, a double-sided double arc welding (DSAW) system with a self-designed passive vision sensor was established, then the image of the groove was captured and the characteristic parameters of groove were extracted by image processing. According to the welding parameters and the extracted geometry size, multi-pass path planning was executed by the DSAW system.

Findings

A DSAW system with a self-designed passive vision sensor was established which can realize the welding thick plate by double-sided double arc by two robots. The clear welding image of the groove was acquired, and an available image processing algorithm was proposed to accurately extract the characteristic parameters of the groove. According to the welding parameters and the extracted geometry size, multi-pass path planning can be executed by the DSAW system automatically.

Originality/value

Gas metal arc welding is used for root welding and filler passes in DSAW. Multi-pass path planning for thick plate by Double-sided Double Arc Welding (DSAW) based on vision sensor was proposed.

Details

Sensor Review, vol. 34 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 3 August 2021

Denglin Fu, Yanan Wen, Jida Chen, Lansi Lu, Ting Yan, Chaohui Liao, Wei He, Shijin Chen and Lizhao Sheng

The purpose of this paper is to study an electrolytic etching method to prepare fine lines on printed circuit board (PCB). And the influence of organics on the side corrosion…

Abstract

Purpose

The purpose of this paper is to study an electrolytic etching method to prepare fine lines on printed circuit board (PCB). And the influence of organics on the side corrosion protection of PCB fine lines during electrolytic etching is studied in detail.

Design/methodology/approach

In this paper, the etching factor of PCB fine lines produced by new method and the traditional method was analyzed by the metallographic microscope. In addition, field emission scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were used to study the inhibition of undercut of the four organometallic corrosion inhibitors with 2,5-dimercapto-1,3,4-thiadiazole, benzotriazole, l-phenylalanine and l-tryptophan in the electrolytic etching process.

Findings

The SEM results show that corrosion inhibitors can greatly inhibit undercut of PCB fine lines during electrolytic etching process. XPS results indicate that N and S atoms on corrosion inhibitors can form covalent bonds with copper during electrolytic etching process, which can be adsorbed on sidewall of PCB fine lines to form a dense protective film, thereby inhibiting undercut of PCB fine lines. Quantum chemical calculations show that four corrosion inhibitor molecules tend to be parallel to copper surface and adsorb on copper surface in an optimal form. COMSOL Multiphysics simulation revealed that there is a significant difference in the amount of corrosion inhibitor adsorbed on sidewall of the fine line and the etching area.

Originality/value

As a clean production technology, electrolytic etching method has a good development indicator for the production of high-quality fine lines in PCB industry in the future. And it is of great significance in saving resources and reducing environmental pollution.

Details

Circuit World, vol. 49 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 17 May 2021

Zhiqi Zhao, Lei Luo, Dandan Qiu, Songtao Wang, Zhongqi Wang and Bengt Ake Sunden

This study aims to explore the 3 D separated flow fields and heat transfer characteristics at the end wall of a serpentine channel with various turn clearances using topological…

Abstract

Purpose

This study aims to explore the 3 D separated flow fields and heat transfer characteristics at the end wall of a serpentine channel with various turn clearances using topological analysis and critical points principles of three-dimensional vortex flow.

Design/methodology/approach

This aims to explore the 3 D separated flow fields and heat transfer characteristics at the end wall of a serpentine channel with various turn clearances using topological analysis as well as critical points principles of three-dimensional vortex flow.

Findings

The endwall heat transfer in the narrow spacing passage is significantly stronger than that in a wide spacing channel. As the gap clearance is kept at 0.87 times of the hydraulic diameter, the endwall heat transfer and thermal performance can be accordingly enhanced with low pressure drops, which is because a relatively strong concentrated impingement flow for the medium gap clearance helps to restrain the downstream fluid flow and enhance the shear effect of the secondary flow.

Practical implications

The numerical results can be applied in designing sharp turn of serpentine channel in heat exchangers, heat sinks, piping system, solar receiver and gas turbine blades.

Originality/value

The evolution mechanism of the vortices in the turning region under different gap clearance was analyzed, and thermal enhancement characteristics were predicted innovatively using topological analysis method.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 February 2023

Mustafa Soylak and Veysel Erturun

The purpose of this study is to examine the effect of the rivet heads formed on the rivet strength by an experimental study if the bucking bar used in the forged rivet application…

Abstract

Purpose

The purpose of this study is to examine the effect of the rivet heads formed on the rivet strength by an experimental study if the bucking bar used in the forged rivet application includes gaps with different angles.

Design/methodology/approach

0.81 (0.032”) mm thick 2024 T3 sheets were used for the rivet joints. AD 2117 T4 forged rivets with a diameter of 3.2 mm (0.125″, 1/8″) are used for the joints. The special bucking bars (sidewall intersection angles of flat, 40°, 60° and 80°) were manufactured for the riveting process. To determine the mechanical properties of the prepared samples, cross-tension and tensile-shear tests were performed on a universal tensile testing machine.

Findings

As a result of the tensile-shear tests and cross-tensile, use of an 80 degrees bucking bar instead of rivets with a flat bucking bar increases the strength of the joint by approximately 20%. There is no systematic change in elongation. The results of tensile-shear and cross-tensile tests showed that forging rivets by special bucking bars have a significant effect on joint strength.

Originality/value

Increase in strength will require the use of thinner sheet metal and smaller rivets to achieve the same strength. This will reduce the weight of the aircraft. Weight reduction also means less fuel consumption and more economical flight. This increase in strength is a very important scientific achievement.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 183