Numerical investigation of fluid flow structure and heat transfer in a passage with continuous and truncated V-shaped ribs
International Journal of Numerical Methods for Heat & Fluid Flow
ISSN: 0961-5539
Article publication date: 5 January 2015
Abstract
Purpose
The employment of continuous ribs in a passage involves a noticeable pressure drop penalty, while other studies have shown that truncated ribs may provide a potential to reduce the pressure drop while keeping a significant heat transfer enhancement. The purpose of this paper is to perform computer-aided simulations of turbulent flow and heat transfer of a rectangular cooling passage with continuous or truncated 45-deg V-shaped ribs on opposite walls.
Design/methodology/approach
Computational fluid dynamics technique is used to study the fluid flow and heat transfer characteristics in a three-dimensional rectangular passage with continuous and truncated V-shaped ribs.
Findings
The inlet Reynolds number, based on the hydraulic diameter, is ranged from 12,000 to 60,000 and a low-Re k-e model is selected for the turbulent computations. The local flow structure and heat transfer in the internal cooling passages are presented and the thermal performances of the ribbed passages are compared. It is found that the passage with truncated V-shaped ribs on opposite walls provides nearly equivalent heat transfer enhancement with a lower (about 17 percent at high Reynolds number of 60,000) pressure loss compared to a passage with continuous V-shaped ribs or continuous transversal ribs.
Research limitations/implications
The fluid is incompressible with constant thermophysical properties and the flow is steady. The passage is stationary.
Practical implications
New and additional data will be helpful in the design of ribbed passages to achieve a good thermal performance.
Originality/value
The results imply that truncated V-shaped ribs are very effective in improving the thermal performance and thus are suggested to be applied in gas turbine blade internal cooling, especially at high velocity or Reynolds number.
Keywords
Acknowledgements
This work was supported by National Natural Science Foundation of China (11202164) and NPU Foundation for Fundamental Research (NPU-FFR-JC20130115). The authors also thank Dr Lei Wang at Lund University for his useful suggestions and experimental data.
Citation
Li, S., Xie, G. and Sunden, B. (2015), "Numerical investigation of fluid flow structure and heat transfer in a passage with continuous and truncated V-shaped ribs", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 25 No. 1, pp. 171-189. https://doi.org/10.1108/HFF-08-2013-0246
Publisher
:Emerald Group Publishing Limited
Copyright © 2015, Emerald Group Publishing Limited