Search results

1 – 10 of 473
Article
Publication date: 12 August 2022

Sheng Cui, Qiuxiang Wu and Burcu Erdemir

The authors explored the effect of college student leader experience on students' employment prospects, such as their starting salary. The authors also examined the factors behind…

Abstract

Purpose

The authors explored the effect of college student leader experience on students' employment prospects, such as their starting salary. The authors also examined the factors behind being a student leader and the set of skills that foster the effect of leadership experience.

Design/methodology/approach

Using an empirical panel survey, the authors collected data from 3,361 undergraduate students over five consecutive years in China, which were analysed using different econometric methods.

Findings

The starting salary premium associated with student leaders' experiences was approximately 7%. Individual learning, problem-solving, and interpersonal skills were mediating variables that replaced half of the wage premium effect of the student leader. Family background and types of educational experiences were associated with being a student leader and labour market outcomes.

Research limitations/implications

The authors only explored a few leadership-related employability skills; other relevant skills require consideration.

Practical implications

This study informs students, parents, and higher education institutions (HEIs) by clarifying the importance of leadership development. An effective transition from higher education to the labour market should be emphasised.

Social implications

Higher education educators should provide guidance to student organisations and promote formal and informal student leadership education to all students.

Originality/value

The authors revealed some factors that promote student leadership and how they are associated with labour market outcomes in China. The authors also verified and validated the capital improvement channel for some specific leadership-related skills to explain the effect of student leader experience on employment outcomes.

Details

Education + Training, vol. 64 no. 5
Type: Research Article
ISSN: 0040-0912

Keywords

Article
Publication date: 14 August 2009

Xue‐Bin Yang, Xin‐Qiao Jin, Zhi‐Min Du, Tian‐Sheng Cui and Shao‐Kan Yang

The purpose of this paper is to investigate the frictional behavior of polytetrafluoroethylene (PTFE) composites under oil‐free sliding conditions.

Abstract

Purpose

The purpose of this paper is to investigate the frictional behavior of polytetrafluoroethylene (PTFE) composites under oil‐free sliding conditions.

Design/methodology/approach

The friction force and power consumption of pressure packing seals, which were, respectively, made of common filled PTFE, 30 wt% CF (carbon fiber) + PTFE and C/C (carbon/carbon) + PTFE, are studied in a reciprocating oil‐free compressor arrangement. Their coefficient of friction is tested on a block‐on‐ring type tribometer.

Findings

The results indicate that influence of mean sliding velocity on filled PTFE composites is apparently more predominant than the others. The friction force curvilinear path of 30 wt% CF+PTFE is hardly influenced by changing crankshaft turn angle. For C/C+PTFE, the effect of mean piston velocity on friction force is not evident. The results also indicate that the friction coefficient of C/C+PTFE is lower than that of 30 wt% CF+PTFE if their applied normal force exceeds 9.8 N. Furthermore, their variation curve of friction force is little different and the power consumption of C/C+PTFE is slightly higher than that of 30 wt% CF+PTFE.

Research limitations/implications

Neither the effect of real contact area on friction coefficient measured in a tribometer nor the influence of the temperature on friction force and power tested in a compressor is not taken into consideration here.

Practical implications

Owing to its good mechanical performances and frictional behaviors, C/C+PTFE is an optimum and promising material under conditions with sealing pressure up to 10 MPa and sliding velocity exceeding 4.0 m/s.

Originality/value

A novel material called C/C+PTFE is considered to make packing rings for oil‐free reciprocating compressors and its friction behaviour is tested on a refitted compressor.

Details

Industrial Lubrication and Tribology, vol. 61 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Book part
Publication date: 6 February 2023

Daisy Singh and Pulak Mishra

The notion of sustainability broadly builds upon the development of the present without hampering the needs of the future generation. Accordingly, the contemporary development…

Abstract

The notion of sustainability broadly builds upon the development of the present without hampering the needs of the future generation. Accordingly, the contemporary development programmes, in general, emphasise on minimising the adverse bearings of climate change and arresting the irreversible ecological degradation following the implementation of the growth-oriented economic models. While such idea of sustainable development is expected to be applied across different sectors, the traditional urban development projects such as the Integrated Development of Small and Medium Towns (IDSMT) (1979), the Mega-City Scheme (1993), and the Jawaharlal Nehru National Urban Renewal Mission (JNNURM) (2005) focussed mainly on physical infrastructure with inadequate emphasis on the ecological aspects and sustainability. However, with the experiences of globalisation and the negative impact of changing climate, the recent urban development initiatives across the world have gone through considerable redesigning, and the idea of eco-city, compact city, sustainable city, etc., have taken the central place in the project proposals. In this connection, the Smart City Mission (SCM) (2015) of the Government of India has emerged as an important initiative to facilitate improvement in the standard of living along with economic growth through the development of urban infrastructure and integration with intelligent technologies. This chapter attempts to understand how the projects under the SCM have incorporated various ecological aspects to transform the cities into liveable and sustainable ones for the future generation. Using secondary data and carrying out a comparative analysis of selected smart city proposals, this chapter finds that there is still a lack of adequate emphasis on ecological sustainability in many smart city proposals. This chapter suggests revisiting the smart city proposals, and initiatives should be made towards the development of urban areas in a sustainable way.

Details

The Impact of Environmental Emissions and Aggregate Economic Activity on Industry: Theoretical and Empirical Perspectives
Type: Book
ISBN: 978-1-80382-577-9

Keywords

Article
Publication date: 7 August 2018

Hongwei Cui, Zisheng Lian, Long Li and Qiliang Wang

The hydro-viscous drive (HVD) has been widely used in fan transmission in vehicles, fans, and scraper conveyors for step-less speed regulating and soft starting. It is an…

Abstract

Purpose

The hydro-viscous drive (HVD) has been widely used in fan transmission in vehicles, fans, and scraper conveyors for step-less speed regulating and soft starting. It is an efficient method to save energy and reduce consumption. This study aims to analyze the influencing factors of oil film shear torque accurately.

Design/methodology/approach

The shear torque calculation model of double arc oil groove friction pairs was established. The influence of groove structure parameters on shear torque was analyzed. The interaction between viscosity temperature and shear torque was considered. Meanwhile, the equivalent radius was calculated when the rupture of oil film appeared. Finally, the test rig of torque characteristics was set up. The variance of shear torque with the input rotation speed under different oil film thickness, different oil temperature, and different flow rate was seen.

Findings

The results show that the shear torque increases with the growth of rotation speed. However, the increase of torque is quite gradual because of the effect of the change of viscosity, which is caused by the rise of temperature. The shear torque increases with the decrease of thickness, the increase of inlet flow rate, and the decrease of inlet oil temperature. Meanwhile, when the feeding flow rate is less than the theoretical, the oil film gets ruptured and the shear torque decreases sharply.

Originality/value

The influence on shear torque during full film shear stage in HVD can be achieved much more accurately through both experimental research and theoretical modeling in which groove parameters, influence of temperature, and oil film rupture are considered. Therefore, the shear torque of HVD can be predicted by theoretical model and experimental research in full film shear stage.

Details

Industrial Lubrication and Tribology, vol. 70 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Book part
Publication date: 13 December 2023

Arushi Bathla, Priyanka Aggarwal and Kumar Manaswi

Digital technology and SDGs have gained increasing interest from the research community. This chapter aims to explore the field through a holistic review of 188 publications from…

Abstract

Digital technology and SDGs have gained increasing interest from the research community. This chapter aims to explore the field through a holistic review of 188 publications from 2017 to 2022. For the systematic review of 188 articles, a three-step methodology comprising of PRISMA guidelines was performed, bibliometric analysis and text analysis using VOS-Viewer and Sentiment Analysis using RStudio had been undertaken. Bibliographic coupling revealed the following clusters Digital Space (Over all SDG), Localising SDGs, Financial Systems and Growth (SDG 8), Sustainable Supply Chain (SDG 9), Education (SDG 4), Energy Management (SDG 7), Smart Cities (SDG 11 and 13), Gender, Skills, and Responsibility (SDG 5 and 12), Food Management (SDG 1, 2 and 3), Business Innovation (SDG 8 and 9) and ICT (SDG 9). Next, co-occurrence analysis highlighted the following clusters Circular Economy (SDG 8), Higher Education System (SDG 4), Digital health (SDG 3), Industry 4.0 (SDG 9) and Supply Chain Management (SDG 9). Next, text analysis traced the most relevant areas of work within the theme. Finally, sentiment analysis revealed positive sentiments of the field. The research concluded that only a few SDGs had found major focus while the others don't have any solid ground in the literature. This chapter presents a knowledge structure by mapping the most relevant SDGs in the context of digital technology and sets directions for future research.

Details

Fostering Sustainable Development in the Age of Technologies
Type: Book
ISBN: 978-1-83753-060-1

Keywords

Article
Publication date: 29 April 2024

Zhuofeng Li, Shide Mo, Kaiwen Yang and Yunmin Chen

The paper aims to clarify the distribution of excess pore pressure during cone penetration in two-layered clay and its influence on penetrometer resistance.

Abstract

Purpose

The paper aims to clarify the distribution of excess pore pressure during cone penetration in two-layered clay and its influence on penetrometer resistance.

Design/methodology/approach

An arbitrary Lagrangian–Eulerian scheme is adopted to preserve the quality of mesh throughout the numerical simulation. Simplified methods of layered penetration and coupled pore pressure analysis of cone penetration have been proposed and verified by previous studies. The investigation is then extended by the present work to study the cone penetration test in a two-layered clay profile assumed to be homogeneous with the modified Cam clay model.

Findings

The reduction of the range of pore pressure with decreasing PF will cause a decrease of the sensing distance. The PF of the underlying soil is one of the factors that determine the development distance. The interface can be obtained by taking the position of the maximum curvature of the penetrometer resistance curve in the case of stiff clay overlying soft clay. In the case of soft clay overlying stiff clay, the interface locates at the maximum curvature of the penetrometer resistance curve above about 1.6D.

Research limitations/implications

The cone penetration analyses in this paper are conducted assuming smooth soil-cone contact.

Originality/value

A simplified method based on ALE in Abaqus/Explicit is proposed for layered penetration, which solves the problem of mesh distortion at the interface between two materials. The stiffness equivalent method is also proposed to couple pore pressure during cone penetration, which achieves efficient coupling of pore water pressure in large deformations.

Details

Engineering Computations, vol. 41 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 April 2011

Amir Hossein Alavi and Amir Hossein Gandomi

The complexity of analysis of geotechnical behavior is due to multivariable dependencies of soil and rock responses. In order to cope with this complex behavior, traditional forms…

3813

Abstract

Purpose

The complexity of analysis of geotechnical behavior is due to multivariable dependencies of soil and rock responses. In order to cope with this complex behavior, traditional forms of engineering design solutions are reasonably simplified. Incorporating simplifying assumptions into the development of the traditional models may lead to very large errors. The purpose of this paper is to illustrate capabilities of promising variants of genetic programming (GP), namely linear genetic programming (LGP), gene expression programming (GEP), and multi‐expression programming (MEP) by applying them to the formulation of several complex geotechnical engineering problems.

Design/methodology/approach

LGP, GEP, and MEP are new variants of GP that make a clear distinction between the genotype and the phenotype of an individual. Compared with the traditional GP, the LGP, GEP, and MEP techniques are more compatible with computer architectures. This results in a significant speedup in their execution. These methods have a great ability to directly capture the knowledge contained in the experimental data without making assumptions about the underlying rules governing the system. This is one of their major advantages over most of the traditional constitutive modeling methods.

Findings

In order to demonstrate the simulation capabilities of LGP, GEP, and MEP, they were applied to the prediction of: relative crest settlement of concrete‐faced rockfill dams; slope stability; settlement around tunnels; and soil liquefaction. The results are compared with those obtained by other models presented in the literature and found to be more accurate. LGP has the best overall behavior for the analysis of the considered problems in comparison with GEP and MEP. The simple and straightforward constitutive models developed using LGP, GEP and MEP provide valuable analysis tools accessible to practicing engineers.

Originality/value

The LGP, GEP, and MEP approaches overcome the shortcomings of different methods previously presented in the literature for the analysis of geotechnical engineering systems. Contrary to artificial neural networks and many other soft computing tools, LGP, GEP, and MEP provide prediction equations that can readily be used for routine design practice. The constitutive models derived using these methods can efficiently be incorporated into the finite element or finite difference analyses as material models. They may also be used as a quick check on solutions developed by more time consuming and in‐depth deterministic analyses.

Details

Engineering Computations, vol. 28 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 November 2022

Ling Chen, Zhi Su, Xiaotong He, Xiang Chen and Lin Dong

Embroidery as a textile embellishment technique plays an important role in people's daily life. Esthetic embroidery artworks possess cultural values. With the development of…

Abstract

Purpose

Embroidery as a textile embellishment technique plays an important role in people's daily life. Esthetic embroidery artworks possess cultural values. With the development of robotics and artificial intelligence (AI), these technologies have been studied and applied in the embroidery process. This study aims to survey how these technologies facilitate embroidery from different aspects.

Design/methodology/approach

This paper surveys how the technologies of robotics and AI are applied in the embroidery field. The applications are mainly reviewed from three aspects: computerized robotic embroidery systems has been widely used for the mass production of embroidered textiles, the advanced technological systems and techniques have greatly facilitated the development of smart textiles and the artificial intelligence plays an important role in the inheritance, innovation and protection of traditional handicraft artwork of embroidery.

Findings

The programmable robotic embroidery machines have greatly improved the production efficiency of embroidered textiles and promoted the development of electronic textiles. The AI, mainly the deep learning technology, brings significant benefits to esthetic embroidery creation. Technology-based embroidery has become a hot research topic in the field of textiles.

Originality/value

This paper summarizes the application of robotics and AI technologies in the field of embroidery, which provides readers a comprehensive and systematic understanding about the research progress of modern technology-oriented embroidery. This helps readers gain inspiration from the technology perspectives.

Details

Assembly Automation, vol. 42 no. 6
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 3 February 2021

S. Sarath and P. Sam Paul

A new cutting tool is always well-defined and sharp at the onset of the metal cutting process and gradually losses these properties as the machining process advances. Similarly…

Abstract

Purpose

A new cutting tool is always well-defined and sharp at the onset of the metal cutting process and gradually losses these properties as the machining process advances. Similarly, at the beginning of the machining process, amplitude of tool vibrations is considerably low and it increases gradually and peaks at the end of the service period of the cutting tool while machining. It is significant to provide a corresponding real-time varying damping to control this chatter, which directly influences accuracy and quality of productivity. This paper aims to review the literature related to the application of smart fluid to control vibration in metal cutting and also focused on the challenges involved in the implementation of active control system during machining process.

Design/methodology/approach

Smart dampers, which are used as semi-active and active dampers in metal cutting, were reviewed and the research studies carried out in the field of the magnetorheological (MR) damper were concentrated. In smart materials, MR fluids possess some disadvantages because of their sedimentation of iron particles, leakage and slow response time. To overcome these drawbacks, new MR materials such as MR foam, MR elastomers, MR gels and MR plastomers have been recommended and suggested. This review intents to throw light into available literature which exclusively deals with controlling chatter in metal cutting with the help of MR damping methods.

Findings

Using an MR damper popularly known for its semi-active damping characteristics is very adaptable and flexible in controlling chatter by providing damping to real-time amplitudes of tool vibration. In the past, many researchers have attempted to implement MR damper in metal cutting to control vibration and were successful. Various methods with the help of MR fluid are illustrated.

Research limitations/implications

A new cutting tool is always well-defined and sharp at the onset of metal cutting process and gradually losses these properties as the machining process advances. Similarly, at the beginning of the machining process, amplitude of tool vibrations is considerably low and it increases gradually and peaks at the end of service period of cutting tool while machining. Application of MR damper along with the working methodology in metal cutting is presented, challenges met are analyzed and a scope for development is reviewed.

Practical implications

This study provides corresponding real-time varying damping to control tool vibration which directly influences accuracy and quality of productivity. Using an MR damper popularly known for its semi-active damping characteristics is very adaptable and flexible in controlling chatter by providing damping to real-time amplitudes of tool vibration.

Social implications

This study attempts to implement smart damper in metal cutting to control vibrations.

Originality/value

It is significant to provide corresponding real-time varying damping to control tool vibration which directly influences accuracy and quality of productivity.

Details

World Journal of Engineering, vol. 18 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 15 November 2022

Zhiqiang Zhang, Xingyu Zhu and Ronghua Wei

Large displacement misalignment under the action of active faults can cause complex three-dimensional deformation in subway tunnels, resulting in severe damage, distortion and…

Abstract

Purpose

Large displacement misalignment under the action of active faults can cause complex three-dimensional deformation in subway tunnels, resulting in severe damage, distortion and misalignment. There is no developed system of fortification and related codes to follow. There are scientific problems and technical challenges in this field that have never been encountered in past research and practices.

Design/methodology/approach

This paper adopted a self-designed large-scale active fault dislocation simulation loading system to conduct a similar model test of the tunnel under active fault dislocation based on the open-cut tunnel project of the Urumqi Rail Transit Line 2, which passes through the Jiujiawan normal fault. The test simulated the subway tunnel passing through the normal fault, which is inclined at 60°. This research compared and analyzed the differences in mechanical behavior between two types of lining section: the open-cut double-line box tunnel and the modified double-line box arch tunnel. The structural response and failure characteristics of the open-cut segmented lining of the tunnel under the stick-slip part of the normal fault were studied.

Findings

The results indicated that the double-line box arch tunnel improved the shear and longitudinal bending performance. Longitudinal cracks were mainly distributed in the baseplate, wall foot and arch foot, and the crack position was basically consistent with the longitudinal distribution of surrounding rock pressure. This indicated that the longitudinal cracks were due to the large local load of the cross-section of the structure, leading to an excessive local bending moment of the structure, which resulted in large eccentric failure of the lining and formation of longitudinal cracks. Compared with the ordinary box section tunnel, the improved double-line box arch tunnel significantly reduced the destroyed and damage areas of the hanging wall and footwall. The damage area and crack length were reduced by 39 and 59.3%, respectively. This indicates that the improved double-line box arch tunnel had good anti-sliding performance.

Originality/value

This paper adopted a self-designed large-scale active fault dislocation simulation loading system to conduct a similar model test of the tunnel under active fault dislocation. This system increased the similarity ratio of the test model, improved the dislocation loading rate and optimized the simulation scheme of the segmented flexible lining and other key factors affecting the test. It is of great scientific significance and engineering value to investigate the structure of subway tunnels under active fault misalignment, to study its force characteristics and damage modes, and to provide a technical reserve for the design and construction of subway tunnels through active faults.

Details

Railway Sciences, vol. 1 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

1 – 10 of 473