Search results

1 – 10 of 20
Article
Publication date: 3 May 2011

Fangwei Xie and Youfu Hou

The purpose of this paper is to reveal the characteristics of hydrodynamic load capacity and torque transferred by oil film with variable viscosity, and the effect of groove…

Abstract

Purpose

The purpose of this paper is to reveal the characteristics of hydrodynamic load capacity and torque transferred by oil film with variable viscosity, and the effect of groove number, width and depth on the hydrodynamic load capacity and torque transfer.

Design/methodology/approach

The radial temperature of friction pair and viscosity of YLA‐N32 hydraulic oil were measured through experiments, and a viscosity‐diameter expression was deduced using polynomial fitting method. Analytical expressions for hydrodynamic load capacity and torque of the oil film were deduced based on hydrodynamic lubrication theory.

Findings

The investigation shows the hydrodynamic load capacity and transferred torque with variable viscosity are much less than that with constant viscosity. Load capacity increases with the increase of groove depth which is the most significant influence factor, while it has the least influence on torque. Groove width has great influence on load capacity and torque. The load capacity increases with the increase of groove width; contrarily, torque decreases with the increase of groove width. Groove number has little influence on load capacity, while it has great influence on torque. The torque decreases with the increase of groove number.

Originality/value

In this paper, analytical solutions for hydrodynamic load capacity and torque of the oil film with variable viscosity are deduced. The paper reveals the relationship between hydrodynamic load capacity, torque transfer and groove number, width and depth.

Details

Industrial Lubrication and Tribology, vol. 63 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 June 2015

Qingrui Meng

– The purpose of this paper is to reveal the effect of starting time on hydro-viscous drive speed regulating start.

Abstract

Purpose

The purpose of this paper is to reveal the effect of starting time on hydro-viscous drive speed regulating start.

Design/methodology/approach

The modified transient Reynolds equation, thermal energy equation and temperature–viscosity equation were solved simultaneously by using finite element method. And then variations of the oil film load capacity, variations of temperature and variations of the torque generated by the oil film during the starting process were obtained.

Findings

The results show that during the starting process, both the oil film load capacity and the temperature show an upward trend, the torque increases during the beginning period and then decreases during the latter part of the starting process. When the starting time is less than 60 s, variations of the oil film load capacity and temperature show fluctuations, which decrease with the starting time. For any output speed, the corresponding oil film load capacity, temperature and torque decrease with the starting time, and the decreasing amplitude also decreases with the starting time.

Originality/value

This paper indicates that the starting time can be set to 60-90 s to obtain a perfect starting process. The simulation results are verified by the speed regulating start experiments. Research findings of this work provide theoretical basis for the design and practical application of the hydro-viscous drive equipments.

Details

Industrial Lubrication and Tribology, vol. 67 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 October 2018

Qingrui Meng, Zhao Chenghao and Tian Zuzhi

Friction pairs of the hydro-viscous drive speed regulating start device should be designed based on the rated torque. To obtain design basis of the rated torque of the…

Abstract

Purpose

Friction pairs of the hydro-viscous drive speed regulating start device should be designed based on the rated torque. To obtain design basis of the rated torque of the hydro-viscous drive speed regulating start device, studies on effect of torque ratio (a ratio of the load torque to the rated torque) on speed regulating start were carried out theoretically and experimentally.

Design/methodology/approach

Under different torque ratio, the modified Reynolds, the thermal energy and the viscosity-temperature equations were solved simultaneously by using finite element method to reveal variation laws of the oil film load capacity and torque transmission during the starting process. Then, speed regulating start experiments were carried out to study the following performance of the output speed.

Findings

The results show that oil film thickness decreases with the increase of the torque ratio; when oil film thickness is less than 0.05 mm, oil film temperature increases rapidly with the decrease of oil film thickness, which eventually deteriorates performance of the speed regulating start; when the torque ratio decreases to about 0.3, output speed shows a better following performance.

Originality/value

It indicates that, to acquire a better speed regulating start, the rated torque of the hydro-viscous drive speed regulating start device should not be less than three times of the load torque. Achievements of this work provide theoretical basis for optimal design of the friction pairs of the hydro-viscous drive speed regulating start device.

Details

Industrial Lubrication and Tribology, vol. 70 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 September 2017

Fangwei Xie, Diancheng Wu, Yaowen Tong, Bing Zhang and Jie Zhu

The purpose of this paper is to study the influence of structural parameters of oil groove (such as central angle number, depth and so on) on pressure, flow, load capacity and…

Abstract

Purpose

The purpose of this paper is to study the influence of structural parameters of oil groove (such as central angle number, depth and so on) on pressure, flow, load capacity and transmitted torque between friction pairs of hydro-viscous clutch.

Design/methodology/approach

According to the working process of friction pairs of hydro-viscous clutch, mathematical models of hydrodynamic load capacity and torque transmitted by the oil film were built based on viscosity-temperature property. Then analytical solutions of pressure, flow, load capacity and transmitted torque were obtained; effects of central angle of oil groove zone and friction contact zone, oil film thickness, number of oil grooves on pressure, flow, load capacity and torque were studied theoretically.

Findings

The research found that the central angle of oil groove zone, number of oil grooves and oil groove depth have similar effects on flow, which means that with the increase of central angle, number or depth of oil grooves, the flow also increases; pressure in friction contact zone and oil groove zone drops along radial direction, whereas its value in oil groove zone is higher. With the increase of the central angle of oil groove zone, pressure in friction contact zone and friction contact zone rises, and the load capacity increases, whereas the transmitted torque drops. Number of oil grooves has little effect on load capacity. When the oil film thickness increases, its flow increases accordingly, whereas the pressure, load capacity and transmitted torque drops. Meanwhile, the transmitted torque decreases with the increase of number of oil grooves, whereas the oil groove depth nearly has no effects on transmitted torque.

Originality/value

In this paper, mathematical models of hydrodynamic load capacity and torque transmitted by oil film were built based on viscosity-temperature property in the working process of hydro-viscous clutch, and their analytical solutions were obtained; effects of structural parameters of oil groove on transmission characteristics of hydro-viscous clutch based on viscosity-temperature property were revealed. The research results are of great value to the theory development of hydro-viscous drive technology, the design of high-power hydro-viscous clutch and relative control strategy.

Details

Industrial Lubrication and Tribology, vol. 69 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 21 June 2011

Qingrui Meng and Youfou Hou

The purpose of this paper is to reveal the effect of working oil temperature, load and starting time on hydro‐viscous drive speed‐regulating start.

Abstract

Purpose

The purpose of this paper is to reveal the effect of working oil temperature, load and starting time on hydro‐viscous drive speed‐regulating start.

Design/methodology/approach

The authors developed an experimental equipment and carried out a number of experiments under different temperatures, load and starting time.

Findings

The results show that both the temperature rise of working oil and the increase of load can induce fluctuations in output speed, but the effect of the working oil temperature rise is more serious; also the longer the starting time is, the more perfectly the output speed can trace the given speed.

Practical implications

It indicates that the working oil temperature should be kept in a certain range by using a cooling device in practical application; and that under this experimental condition, kinematics viscosity of the working oil should be greater than 45 mm2/s under rated working temperature, and the relatively suitable starting time should range from 90 to 120 s.

Originality/value

The paper explains the effect of various factors on speed‐regulating start, and provides the basis for the design and the application of hydro‐viscous drives.

Details

Industrial Lubrication and Tribology, vol. 63 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 27 August 2021

Jianzhong Cui, Hu Li, Dong Zhang, Yawen Xu and Fangwei Xie

The purpose of this study is to investigate the flexible dynamic characteristics about hydro-viscous drive providing meaningful insights into the credible speed-regulating…

85

Abstract

Purpose

The purpose of this study is to investigate the flexible dynamic characteristics about hydro-viscous drive providing meaningful insights into the credible speed-regulating behavior during the soft-start.

Design/methodology/approach

A comprehensive dynamic transmission model is proposed to investigate the effects of key parameters on the dynamic characteristics. To achieve a trade-off between the transmission efficiency and time proportion of hydrodynamic and mixed lubrication, a multi-objective optimization of friction pair system by genetic algorithm is presented to obtain the optimal combination of design parameters.

Findings

Decreasing the engagement pressure or the ratio of inner and outer radius, increasing the lubricating oil viscosity or the outer radius will result in the increase of time proportion of hydrodynamic and mixed lubrication, as well as the transmission efficiency and its maximum value. After optimization, main dynamic parameters including the oil film thickness, angular velocity of the driven disk, viscous torque and total torque show remarkable flexible transmission characteristics.

Originality/value

Both the dynamic transmission model and multi-objective optimization model are established to analyze the effects of main design parameters on the dynamic characteristics of hydro-viscous flexible drive.

Details

Industrial Lubrication and Tribology, vol. 73 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 7 August 2018

Hongwei Cui, Zisheng Lian, Long Li and Qiliang Wang

The hydro-viscous drive (HVD) has been widely used in fan transmission in vehicles, fans, and scraper conveyors for step-less speed regulating and soft starting. It is an…

Abstract

Purpose

The hydro-viscous drive (HVD) has been widely used in fan transmission in vehicles, fans, and scraper conveyors for step-less speed regulating and soft starting. It is an efficient method to save energy and reduce consumption. This study aims to analyze the influencing factors of oil film shear torque accurately.

Design/methodology/approach

The shear torque calculation model of double arc oil groove friction pairs was established. The influence of groove structure parameters on shear torque was analyzed. The interaction between viscosity temperature and shear torque was considered. Meanwhile, the equivalent radius was calculated when the rupture of oil film appeared. Finally, the test rig of torque characteristics was set up. The variance of shear torque with the input rotation speed under different oil film thickness, different oil temperature, and different flow rate was seen.

Findings

The results show that the shear torque increases with the growth of rotation speed. However, the increase of torque is quite gradual because of the effect of the change of viscosity, which is caused by the rise of temperature. The shear torque increases with the decrease of thickness, the increase of inlet flow rate, and the decrease of inlet oil temperature. Meanwhile, when the feeding flow rate is less than the theoretical, the oil film gets ruptured and the shear torque decreases sharply.

Originality/value

The influence on shear torque during full film shear stage in HVD can be achieved much more accurately through both experimental research and theoretical modeling in which groove parameters, influence of temperature, and oil film rupture are considered. Therefore, the shear torque of HVD can be predicted by theoretical model and experimental research in full film shear stage.

Details

Industrial Lubrication and Tribology, vol. 70 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 January 2024

Shi Chen, Zhiyong Han, Qiang Zeng, Bing Wang, Liming Wang, Liuyang Guo and Yimin Shao

Hydro-viscous drive (HVD) clutches are widely used in equipment requiring soft start, such as fans and pumps, to transmit torque and adjust speed by changing the gap distance…

83

Abstract

Purpose

Hydro-viscous drive (HVD) clutches are widely used in equipment requiring soft start, such as fans and pumps, to transmit torque and adjust speed by changing the gap distance between friction pairs. This paper aims to propose a novel two-parameter evaluation method for HVD during the mixed lubrication stage. The objective is to develop an effective model that establishes the relationship between these parameters and the actual surface topography.

Design/methodology/approach

In the presented methods, the fractal features of the real manufacturing surface are calculated based on the power spectrum function by the ultra-depth three-dimensional microscope. After that, the hybrid friction model of the friction plate is established based on mixed elasto-hydrodynamic lubrication theory, boundary friction model and fractal theory. Then the torque and load bearing characteristics of the clutch are obtained, and the influences of the surface fractal features are investigated and discussed. Finally, the Weierstrass–Mandelbrot function is adopted for the surface topography characterization and evaluation.

Findings

The results indicate that the proposed method exhibits good accuracy, while the speed difference between the friction pair exceeds 2,500 rpm. It is concluded that this paper proposed a way to evaluate the torque and loading capacity of HVD considering the real manufacturing surface topography and is helpful for surface optimization.

Originality/value

The originality and value of this study lie in its development of a novel torque and load bearing capacity evaluation method for HVD in mixed lubrication stage, considering manufacturing surface topography and describing the real manufacturing surface.

Details

Industrial Lubrication and Tribology, vol. 76 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 17 August 2018

Fangwei Xie, Xudong Zheng, Yaowen Tong, Bing Zhang, Xinjian Guo, Dengshuai Wang and Yun Wang

The purpose of this paper is to study the working characteristics of hydro-viscous clutch at high rotational speeds and obtain the trend of flow field variation of oil film.

Abstract

Purpose

The purpose of this paper is to study the working characteristics of hydro-viscous clutch at high rotational speeds and obtain the trend of flow field variation of oil film.

Design/methodology/approach

The FLUENT simulation model of the oil film between the friction disks is built. The effect of variation of working parameters such as input rotational speed, oil flow rate and film thickness on two-phase flow regime and transmission torque is studied by using the volume of fluid model.

Findings

The results show that the higher the rotational speed, the severer the cavitation is. In addition, the two-phase flow region makes the coverage of oil film over the friction pairs’ surface reduce, which results in a decrease in transmission torque for the hydro-viscous clutch.

Originality/value

These simulation results are of interest for the study of hydro-viscous drive and its applications. This study can also provide a theoretical basis for power transmission mechanism of oil film by considering the existence of a two-phase flow regime consisting of oil and air.

Details

Industrial Lubrication and Tribology, vol. 70 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 March 2016

Fangwei Xie, Yaowen Tong, Diancheng Wu, Bing Zhang and Kaiyu Dai

The purpose of this paper is to study the influence of different cross-sectional shapes (rectangular, trapezoidal, oval and triangular) and layout forms of oil grooves (radial…

Abstract

Purpose

The purpose of this paper is to study the influence of different cross-sectional shapes (rectangular, trapezoidal, oval and triangular) and layout forms of oil grooves (radial, circumferential, inclined, compound, helical and double-helical), and determine the optimal section shape and layout form of oil grooves on the temperature field.

Design/methodology/approach

Heat conduction theory model was established based on startup characteristics and friction heat principle of hydro-viscous clutch (HVC), and then the theoretical expression of angular velocity of the friction pair and control pressure were deduced, and the heat flux and its distribution on friction disk and separator disk were calculated. Finally, the finite element method was used to solve the temperature field of the friction pair.

Findings

The studies show that the circumferential oil groove got the highest temperature, and on the surface of all other structures, hot spots appear with different sizes and temperatures, and the maximum temperature difference in the friction zone is about 3°C, and in the oil groove zone is about 16°C, wherein the compound oil groove has the lowest average temperature. This research shows that the compound oil groove with rectangular cross-section is the best choice for the friction pair.

Originality/value

In this paper, it was found that the compound oil groove with rectangular cross-section is the best choice for the friction pair, and it provided a favorable theory reference and technical support for the structural design of the friction pair and optimized design of the high-power HVC.

Details

Industrial Lubrication and Tribology, vol. 68 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 20