Search results

1 – 10 of 295
Article
Publication date: 3 December 2018

Panagiota Polydoropoulou, Christos Vasilios Katsiropoulos, Andreas Loukopoulos and Spiros Pantelakis

Over the last decades, self-healing materials based on polymers are attracting increasing interest due to their potential for detecting and “autonomically” healing damage. The use…

241

Abstract

Purpose

Over the last decades, self-healing materials based on polymers are attracting increasing interest due to their potential for detecting and “autonomically” healing damage. The use of embedded self-healing microcapsules represents one of the most popular self-healing concepts. Yet, extensive investigations are still needed to convince on the efficiency of the above concept. The paper aims to discuss these issues.

Design/methodology/approach

In the present work, the effect of embedded self-healing microcapsules on the ILSS behavior of carbon fiber reinforced composite materials has been studied. Moreover, the self-healing efficiency has been assessed. The results of the mechanical tests were discussed supported by scanning electron microscope (SEM) as well as by Attenuated Total Reflection–Fourier-transform infrared spectroscopy (ATR–FTIR) analyses.

Findings

The results indicate a general trend of a degraded mechanical behavior of the enhanced materials, as the microcapsules exhibit a non-uniform dispersion and form agglomerations which act as internal defects. A remarkable value of the self-healing efficiency has been found for materials with limited damage, e.g. matrix micro-cracks. However, for significant damage, in terms of large matrix cracks and delaminations as well as fiber breakages, the self-healing efficiency is limited.

Originality/value

The results obtained by SEM analysis as well as by ATR–FTIR spectroscopy constitute a strong indication that the self-healing mechanism has been activated. However, further investigation should be conducted in order to provide definite evidence.

Details

International Journal of Structural Integrity, vol. 9 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 21 October 2022

Çağatay Özada, Merve Ünal, Eslem Kuzu Şahin, Hakkı Özer, Ali Riza Motorcu and Murat Yazıcı

This study produced epoxy-filled urea-formaldehyde (UF) microcapsules (MCs) and T-403 amine MCs using the in situ technique. The Taguchi method was used to determine the effects…

Abstract

Purpose

This study produced epoxy-filled urea-formaldehyde (UF) microcapsules (MCs) and T-403 amine MCs using the in situ technique. The Taguchi method was used to determine the effects of the control factors (temperature, stirring speed, core-shell ratio and surfactant concentration) affecting MCs’ core diameter and core content and optimizing their optimum levels with a single criterion. Optimum control factor levels, which simultaneously provide maximum core diameter and core content of MCs, were determined by the PROMETHEE-GAIA multi-criteria optimization method. In addition, the optimized MC yield was analyzed by thermal camera images and compression test.

Design/methodology/approach

Microcracks in materials used for aerospace vehicles and automotive parts cause serious problems, so research on self-healing in materials science becomes critical. The damages caused by micro-cracks need to heal themselves quickly. The study has three aims: (1) production of self-healing MCs, mechanical and chemical characterization of produced MCs, (2) single-criteria and multi-criteria optimization of parameters providing maximum MC core diameter and core content, (3) investigation of self-healing property of produced MCs and evaluation. Firstly, MCs were produced to achieve these goals.

Findings

The optimized micro cures are buried in the epoxy matrix at different concentrations. Thermal camera images after damage indicate the presence of healing. An epoxy-amine MC consisting of a 10% by weight filled aluminum sandwich panel was prepared and subjected to a quasi-static compression test. It was determined that there is a strong bond between the UF shell and the epoxy resin.

Originality/value

The optimization of production factors has been realized to produce the most efficient MCs that heal using less expensive and more accessible methods.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 9 January 2024

Linghuan Li, Shibin Sun, Ronghua Zhuang, Bing Zhang, Zeyu Li and Jianying Yu

This study aims to develop a polymer cement-based waterproof coating with self-healing capability to efficiently and intelligently solve the building leakage caused by cracking of…

Abstract

Purpose

This study aims to develop a polymer cement-based waterproof coating with self-healing capability to efficiently and intelligently solve the building leakage caused by cracking of waterproof materials, along with excellent durability to prolong its service life.

Design/methodology/approach

Ion chelators are introduced into the composite system based on ethylene vinyl acetate copolymer emulsion and ordinary Portland cement to prepare self-healing polymer cement-based waterproof coating. Hydration, microstructure, wettability, mechanical properties, durability, self-healing performance and self-healing products of polymer cement-based waterproof coating with ion chelator are investigated systematically. Meanwhile, the chemical composition of self-healing products in the crack was examined.

Findings

The results showed that ion chelators could motivate the hydration of C2S and C3S, as well as the formation of hydration products (C-S-H gel) of the waterproof coating to improve its compactness. Compared with the control group, the waterproof coating with ion chelator had more excellent water resistance, alkali resistance, thermal and UV aging resistance. When the dosage of ion chelator was 2%, after 28 days of curing, cracks with a width of 0.29 mm in waterproof coating could fully heal and cracks with a width of 0.50 mm could achieve a self-healing efficiency of 72%. Furthermore, the results reveal that the self-healing product in the crack was calcite crystalline CaCO3.

Originality/value

A novel ion chelator was introduced into the composite coating system to endow it with excellent self-healing ability to prolong its service life. It has huge application potential in the field of building waterproofing.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 3 October 2016

Marialuigia Raimondo, Felice De Nicola, Ruggero Volponi, Wolfgang Binder, Philipp Michael, Salvatore Russo and Liberata Guadagno

The purpose of this paper is to describe the first experiments to manufacture self-healing carbon fiber reinforced panels (CFRPs) for the realization of structural aeronautic…

Abstract

Purpose

The purpose of this paper is to describe the first experiments to manufacture self-healing carbon fiber reinforced panels (CFRPs) for the realization of structural aeronautic components in order to address their vulnerability to impact damage in the real service conditions.

Design/methodology/approach

The developed self-healing system is based on ring-opening metathesis polymerizations reaction of microencapsulated 5-ethylidene-2-norbornene/dicyclopentadiene cyclic olefins using Hoveyda-Grubbs’ first generation catalyst as initiator. In this work, the self-healing resin is infused into a carbon fiber dry preform using an unconventional bulk film infusion technique that has allowed to minimize the filtration effects via a better compaction and reduced resin flow paths. Infrared spectroscopy provides a useful way to identify metathesis products and therefore catalyst activity in the self-healing panel after damage. The damage resistance of the manufactured CFRPs is evaluated through hail and drop tests.

Findings

The self-healing manufactured panels show, after damage, catalyst activity with metathesis product formation, as evidenced by an infrared peak at 966 cm−1. The damage response of CFRPs, detected in accord to the requirements of hail impact for the design of a fuselage in composite material, is very good. The results are very encouraging and can constitute a solid basis for bringing this new technology to the self-healable fiber reinforced resins for aerospace applications.

Originality/value

In this paper, autonomically healing CFRPs with damage resistance and self-healing function are proposed. In the development of self-healing aeronautic materials it is critical that self-healing activity functions in adverse weather conditions and at low working temperatures which can reach values as low as −50°C.

Details

International Journal of Structural Integrity, vol. 7 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 6 March 2017

Mehdi Shahidi Zandi and Majdeh Hasanzadeh

The aim of this work is to investigate the self-healing performance of epoxy coatings containing microcapsules. The microcapsule-based coatings were applied on AA6061 Al alloy and…

Abstract

Purpose

The aim of this work is to investigate the self-healing performance of epoxy coatings containing microcapsules. The microcapsule-based coatings were applied on AA6061 Al alloy and immersed in 3.5 per cent NaCl solution.

Design/methodology/approach

Microcapsules with urea–formaldehyde as the shell and linseed oil as the healing agent were prepared by in situ polymerization in an oil-in-water emulsion. For the sake of an optimum self-healing system, some coating samples were prepared by using different microcapsule concentrations: 0, 5, 10 and 20 Wt.%. The scratch-filling efficiency as the theoretical estimate of the self-healing performance was calculated for the coating samples with different microcapsule concentrations. The scratch-sealing efficiency (SSE) as a particularly crucial parameter in the self-healing evaluation of coatings was measured by both electrochemical impedance spectroscopy (EIS) and electrochemical noise (EN) techniques.

Findings

According to EIS and EN results, the coating samples containing 5 and 10 per cent microcapsules provided the insignificant self-healing performance, while the coating sample containing 20 per cent microcapsules exhibited the acceptable self-healing performance to AA6061 alloy in the NaCl solution. The measured SSE values confirmed the good agreement of EN data with electrochemical parameters obtained from the EIS technique.

Originality/value

This work is an attempt to evaluate the self-healing performance of microcapsule-based epoxy coatings applied on AA6061 Al alloy in sea water.

Details

Anti-Corrosion Methods and Materials, vol. 64 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 2 January 2018

Hongsheng Luo, Xingdong Zhou, Yuncheng Xu, Huaquan Wang, Yongtao Yao, Guobin Yi and Zhifeng Hao

This paper aims to exploit shape-memory polymers as self-healable materials. The underlying mechanism involved the thermal transitions as well as the enrichment of the healing…

Abstract

Purpose

This paper aims to exploit shape-memory polymers as self-healable materials. The underlying mechanism involved the thermal transitions as well as the enrichment of the healing reagents and the closure of the crack surfaces due to shape recovery. The multi-stimuli-triggered shape memory composite was capable of self-healing under not only direct thermal but also electrical stimulations.

Design/methodology/approach

The shape memory epoxy polymer composites comprising the AgNWs and poly (ε-caprolactone) were fabricated by dry transfer process. The morphologies of the composites were investigated by the optical microscope and scanning electron microscopy (SEM). The electrical conduction and the Joule heating effect were measured. Furthermore, the healing efficiency under the different stimuli was calculated, whose dependence on the compositions was also discussed.

Findings

The AgNWs network maintained most of the pathways for the electrons transportation after the dry transfer process, leading to a superior conduction and flexibility. Consequently, the composites could trigger the healing within several minutes, as applied with relatively low voltages. It was found that the composites having more the AgNWs content had better electrically triggered performance, while 50 per cent poly (ε-caprolactone) content endowed the materials with max healing efficiency under thermal or electrical stimuli.

Research limitations/implications

The findings may greatly benefit the application of the intelligent polymers in the fields of the multifunctional flexible electronics.

Originality/value

Most studies have by far emphasized on the direct thermal triggered cases. Herein, a novel, flexible and conductive shape memory-based composite, which was capable of self-healing under the thermal or electrical stimulations, has been proposed.

Details

Pigment & Resin Technology, vol. 47 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 3 December 2018

Elisa Calabrese, Pasquale Longo, Carlo Naddeo, Annaluisa Mariconda, Luigi Vertuccio, Marialuigia Raimondo and Liberata Guadagno

The purpose of this paper is to highlight the relevant role of the stereochemistry of two Ruthenium catalysts on the self-healing efficiency of aeronautical resins.

Abstract

Purpose

The purpose of this paper is to highlight the relevant role of the stereochemistry of two Ruthenium catalysts on the self-healing efficiency of aeronautical resins.

Design/methodology/approach

Here, a very detailed evaluation on the stereochemistry of two new ruthenium catalysts evidences the crucial role of the spatial orientation of phenyl groups in the N-heterocyclic carbene ligands in determining the temperature range within the curing cycles is feasible without deactivating the self-healing mechanisms (ring-opening metathesis polymerization reactions) inside the thermosetting resin. The exceptional activity and thermal stability of the HG2MesPhSyn catalyst, with the syn orientation of phenyl groups, highlight the relevant potentiality and the future perspectives of this complex for the activation of the self-healing function in aeronautical resins.

Findings

The HG2MesPhSyn complex, with the syn orientation of the phenyl groups, is able to activate metathesis reactions within the highly reactive environment of the epoxy thermosetting resins, cured up to 180°C, while the other stereoisomer, with the anti-orientation of the phenyl groups, does not preserve its catalytic activity in these conditions.

Originality/value

In this paper, a comparison between the self-healing functionality of two catalytic systems has been performed, using metathesis tests and FTIR spectroscopy. In the field of the design of catalytic systems for self-healing structural materials, a very relevant result has been found: a slight difference in the molecular stereochemistry plays a key role in the development of self-healing materials for aeronautical and aerospace applications.

Details

International Journal of Structural Integrity, vol. 9 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 14 December 2023

Yajun Chen, Zehuan Sui and Juan Du

This paper aims to focus on the research progress of intelligent self-healing anti-corrosion coatings in the aviation field in the past few years. The paper provides certain…

Abstract

Purpose

This paper aims to focus on the research progress of intelligent self-healing anti-corrosion coatings in the aviation field in the past few years. The paper provides certain literature review supports and development direction suggestions for future research on intelligent self-healing coatings in aviation.

Design/methodology/approach

This mini-review uses a systematic literature review process to provide a comprehensive and up-to-date review of intelligent self-healing anti-corrosion coatings that have been researched and applied in the field of aviation in recent years. In total, 64 articles published in journals in this field in the last few years were analysed in this paper.

Findings

The authors conclude that the incorporation of multiple external stimulus-response mechanisms makes the coatings smarter in addition to their original self-healing corrosion protection function. In the future, further research is still needed in the research and development of new coating materials, the synergistic release of multiple self-healing mechanisms, coating preparation technology and corrosion monitoring technology.

Originality/value

To the best of the authors’ knowledge, this is one of the few systematic literature reviews on intelligent self-healing anti-corrosion coatings in aviation. The authors provide a comprehensive overview of the topical issues of such coatings and present their views and opinions by discussing the opportunities and challenges that self-healing coatings will face in future development.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 8 August 2022

Evgenia Madia, Konstantinos Tserpes, Panagiota Polydoropoulou and Spyros Pantelakis

The purpose of this study is the investigation of self-healing materials containing encapsulated healing agents embedded in a polymer matrix with dispersed catalysts. In recent…

Abstract

Purpose

The purpose of this study is the investigation of self-healing materials containing encapsulated healing agents embedded in a polymer matrix with dispersed catalysts. In recent years, the high performance and design flexibility of composite materials have led to their widespread use in the aeronautics, space, automotive and marine fields. Simultaneously, as the need for advanced material properties has increased, many studies have been conducted on multifunctional materials, focusing on different fields of their desired capabilities.

Design/methodology/approach

A multiscale model was developed to simulate the effect of microcapsules on the mechanical behavior of the polymer matrix. Furthermore, the effects of microcapsule diameter and microcapsule concentration on the mechanical behavior of the composite were studied. Digimat and Ansys software were used to simulate the self-healing composites.

Findings

There is a trade-off between the efficiency of the microcapsules and the degradation of the properties of the composite material.

Originality/value

The generated model simulated an encapsulated healing agent in a polymeric matrix.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 19 September 2023

Hong-Feng Li, Jun Sun, Xiao-Yong Wang, Lei-Lei Xing and Guang-Zhu Zhang

The purpose of this paper is to add expanded perlite (EP) immobilized microorganisms that replace part of the standard sand in mortar to improve the self-healing ability of mortar…

Abstract

Purpose

The purpose of this paper is to add expanded perlite (EP) immobilized microorganisms that replace part of the standard sand in mortar to improve the self-healing ability of mortar cracks and reduce the water absorption of mortar after healing.

Design/methodology/approach

Bacillus pseudofirmus spores were immobilized with EP particles as self-healing agents. The effects of adding self-healing agents on the compressive strength of mortar specimens were observed. The ability of mortar specimens to heal cracks was evaluated using crack microscopic observation and water absorption experiments. The filler at the cracks was microscopically analyzed by scanning electron microscope and X-ray diffraction experiments.

Findings

First, the internal curing effect of EP promotes the hydration of cement in mortar, which generates more amount and denser crystal structure of Ca(OH)2 at mortar cracks and improves the self-healing ability of mortar. Second, the self-healing ability of mortar improves with the increase of self-healing agent admixture. Adding a self-healing agent of high admixture makes the planar undulation of calcite crystal accumulation at mortar cracks more significant. Finally, the initial crack widths that can be completely healed by adding EP and self-healing agents to the mortar are 200 µm and 600 µm, respectively.

Originality/value

The innovation points of this study are as follows. (1) The mechanism of the internal curing effect of EP particles on the self-healing ability of mortar cracks was revealed by crack microscopic observation tests and microscopic experiments. (2) The effect of different self-healing agent amounts on the self-healing ability of mortar cracks has been studied. (3) The effects of EP particles and self-healing agents on healing different initial widths were elucidated by crack microscopic observation tests.

Graphical abstract

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 295