Search results

1 – 10 of 59
Article
Publication date: 12 August 2024

Yukei Oyama, Mohsen Rostami and Joon Chung

With the advancements in electric vertical take-off and landing (eVTOL) aircraft technology such as batteries, mechanisms, motors, configurations and so on, designers and…

Abstract

Purpose

With the advancements in electric vertical take-off and landing (eVTOL) aircraft technology such as batteries, mechanisms, motors, configurations and so on, designers and engineers are encouraged to create unique and unconventional configurations of eVTOL aircraft to provide better capabilities and higher efficiencies to compete in the market. The box fan-in-split-wing tiltrotor eVTOL aircraft is an innovative design that aims to address the aerodynamic inefficiencies such as propeller effects in cruise and engine mounts drag that existed in traditional eVTOL aircraft designs such as vectored thrust, rotorcraft, lift + cruise and multi-copter configurations. This paper aims to propose a multi-disciplinary design process to conceptually design the box fan-in-split-wing Tiltrotor eVTOL aircraft.

Design/methodology/approach

An unconventional methodology was used to design the UAM aircraft, and the following parameters are considered: capable of vertical take-off and landing, highly aerodynamic with a high lift-to-drag ratio, low Cd0 modern and appealing, rechargeable or battery swappable and feature to minimise or negate propeller drag. A heavy emphasis on improving performance and weight based on aerodynamics was enforced during the conceptual design phase. MAPLA and XFOIL were used to identify the aerodynamic properties of the aircraft.

Findings

Upon determining the key parameters and the mission requirements and objectives, a list of possible VTOL configurations was derived from theoretical and existing designs. The fan in the wing/split wing was selected, as it could stow the propellers. A tiltrotor configuration was selected because of its ability to reduce the total number of lift props/motors, reducing powerplant weight and improving aerodynamic efficiency. For the propulsion configuration, a battery–motor configuration with a hexa-rotor layout was chosen because of its ability to complement the planform of the aircraft, providing redundant motors in case of failure and because of its reliability, efficiency and lack of emissions. Coupled with the fan-in-wing / split wing concept, the box wing seamlessly combines all chosen configurations.

Originality/value

The box fan-in-split-wing Tiltrotor eVTOL aircraft aims to address the aerodynamic inefficiencies of earlier designs such as propeller effects in cruise and engine mounts drag. The potential benefits of this aircraft, such as increased range, endurance and payload capacity, make it an exciting prospect in the field of Urban Air Mobility.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 27 May 2024

Vittorio Di Vito, Giulia Torrano, Giovanni Cerasuolo and Michele Ferrucci

The small air transport (SAT) domain is gaining increasing interest over the past decade, based on its perspective relevance in enabling efficient travel over a regional range, by…

Abstract

Purpose

The small air transport (SAT) domain is gaining increasing interest over the past decade, based on its perspective relevance in enabling efficient travel over a regional range, by exploiting small airports and fixed wing aircraft with up to 19 seats (EASA CS-23 category). To support its wider adoption, it is needed to enable single pilot operations.

Design/methodology/approach

An integrated mission management system (IMMS) has been designed and implemented, able to automatically optimize the aircraft path by considering trajectory optimization needs. It takes into account both traffic scenario and weather actual and forecasted condition and is also able to select best destination airport, should pilot incapacitation occur during flight. As part of the IMMS, dedicated evolved tactical separation system (Evo-TSS) has been designed to provide elaboration of both surrounding and far located traffic and subsequent traffic clustering, to support the trajectory planning/re-planning by the IMMS.

Findings

The Clean Sky 2-funded project COAST (Cost Optimized Avionics SysTem) successfully designed and validated through flight demonstrations relevant technologies enabling affordable cockpit and avionics and supporting single pilot operations for SAT vehicles. These technologies include the TSS in its baseline and evolved versions, included in the IMMS.

Originality/value

This paper describes the TSS baseline version and the basic aspects of the Evo-TSS design. It is aimed to outline the implementation of the Evo-TSS dedicated software in Matlab/Simulink environment, the planned laboratory validation campaign and the results of the validation exercises in fast-time Matlab/Simulink environment, which were successfully concluded in 2023.

Article
Publication date: 27 June 2024

Akın Akpur

This study investigates the evolution of skilled personnel in airline operations driven by technological advancements. It aims to elucidate the changing personnel demands…

Abstract

Purpose

This study investigates the evolution of skilled personnel in airline operations driven by technological advancements. It aims to elucidate the changing personnel demands necessitated by technological innovations in the ground and flight services.

Design/methodology/approach

The impact of technological advancements on aviation services has been broadly outlined. Secondary sources were used to identify the relationship between technology and human resources in aviation and categorize the current situation. However, the main narrative was based on the author’s observations.

Findings

The progression of technology in air transportation has led to a reduction in the number of personnel involved and the time spent on human interactions. Technological advancements in aviation have predominantly affected three crucial domains: back offices, ground services, and flight services. A future trend foresees a substantial shift toward self-service in ground services, contributing to streamlined processes with minimal errors.

Practical implications

Airlines must consider candidates' ability to adapt to technological changes during the hiring process to enhance operational efficiency and customer satisfaction. The current staff should be supported by training programs to facilitate their adaptation to technology.

Social implications

This study provides a theoretical framework regarding changes in personnel requirements due to technological applications in aviation, the integration of technology into the sector, and the adaptation of current personnel to these technologies.

Originality/value

This perspective resonates with scholars engaged in the realms of aviation and tourism. This study assesses technological progress from both managerial and customer perspectives.

Details

Worldwide Hospitality and Tourism Themes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1755-4217

Keywords

Open Access
Article
Publication date: 27 March 2023

Clinton Ohis Aigbavboa, Andrew Ebekozien and Nompumelelo Mkhize

Aerospace is a demanding technological and industrial sector. Several regulations and policies via innovative digital transformation have been integrated to impact production…

4675

Abstract

Purpose

Aerospace is a demanding technological and industrial sector. Several regulations and policies via innovative digital transformation have been integrated to impact production systems and supply chains, including safety measures. Studies demonstrated that the Fourth Industrial Revolution (4IR) technologies could enhance productivity growth and safety measures. The 4IR role in influencing airlines’ growth is yet to receive in-depth studies in South Africa. Thus, this study aims to investigate the role of 4IR technologies in influencing airlines’ growth in South Africa.

Design/methodology/approach

This research used a qualitative research method. Primary data were compiled via 56 face-to-face semi-structured interviews with major stakeholders. The study achieved saturation. A thematic method was used to analyse the collected data.

Findings

Findings reveal the nine major factors influencing South African airlines’ growth in the 4IR era. This includes investment in ergonomics applications and research, governance is driven by 4IR, collaboration and incorporation of 4IR concepts, partnership with drone technology and high precision and efficiency with 4IR. Others are reskilling and upskilling, investment in 4IR software, policies to promote 4IR usage in the industry and policies to reduce human interface.

Originality/value

Understanding the relative significance of 4IR technologies’ role in airlines’ growth can assist critical stakeholders in promoting innovative policies and regulations tailored towards digitalised aerospace. Thus, the study contributes to strategies to improve digital innovation, airline growth and safety as components of the air travel demands in South Africa.

Details

Journal of Facilities Management , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1472-5967

Keywords

Article
Publication date: 22 August 2024

Felice Di Nicola, Graziano Lonardi, Nicholas Fantuzzi and Raimondo Luciano

The paper aims to analyze the structural integrity of an existing offshore platform located in the Northern Adriatic Sea, followed by the topside decommissioning and the…

Abstract

Purpose

The paper aims to analyze the structural integrity of an existing offshore platform located in the Northern Adriatic Sea, followed by the topside decommissioning and the re-utilization of the jacket as a wind turbine support. The structural integrity assessment against the in-place and the long-term actions is accomplished by using a reduced basis finite element method (RB-FEA) software program assessing the capability of the jacket to be used as a support for wind turbines at the end of its life cycle as oil and gas (O&G) platform.

Design/methodology/approach

The project starts by modeling the jacket, and subsequently, the structural analyses for the in-place loads in operative and extreme conditions are performed. Then, the fatigue analysis is carried out in order to define the cumulative damage necessary to evaluate the possibility to use the jacket as a wind turbine support.

Findings

The results show that the jacket, at the end of the service life as O&G platform, is able to withstand the loads produced by the installation of the wind turbine since the analyses are satisfied even with the conservative approach used which overestimates the thickness loss assuming a linear increasing value during the service life.

Research limitations/implications

Because of the chosen approach, the study presents some limitations, especially concerning the real state of the platform which has been defined considering the thickness loss only. Additionally, a 1D model was used to perform the analyses, and hence, a 3D model could help in evaluating the critical points with higher precision.

Practical implications

The assessment of the structure could be improved by modeling a digital twin of the asset allowing a real-time monitoring which, however, involves a huge amount of data to be processed, so a suitable simulation technology must be used.

Originality/value

The RB-FEA proposed by Akselos is suitable to perform the analyses speeding up the processing of the data even in real time.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 13 July 2023

Mehmet Fatih Burak and Polathan Küsbeci

Considering both the current opportunities of the Internet of things (IoT) and aviation, as well as the potential opportunities they may offer for the future, it is understood…

Abstract

Purpose

Considering both the current opportunities of the Internet of things (IoT) and aviation, as well as the potential opportunities they may offer for the future, it is understood that they are among the important issues that need to be examined in the literature. This study aims to provide an idea by conducting bibliometric and visualization analyses of the current trends and development opportunities of IoT and aviation.

Design/methodology/approach

In this study, descriptive and bibliometric analyses within the framework of co-author, co-citation, bibliographic coupling, and keyword co-occurrence analysis were carried out for publications found to be published between 2007 and 2023 in the Web of Science (WoS) database related to IoT and aviation. VOSviewer (ver. 1.6.18) program and the Biblioshiny application were used to create bibliometric networks and provide visualization.

Findings

As a result of some descriptive and visualization analyses, the current trend of publications on IoT and aviation and future publication opportunities has been revealed. It has been understood that the subject of IoT and aviation is one of the subjects whose number of publications has increased in recent years and has not yet fully matured in terms of the number of publications and has the potential to make new publications.

Originality/value

In this study, bibliometric analysis of IoT and aviation, which could not be found examined before in the literature, and the creation of existing bibliometric networks by visualizing were carried out.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 9 January 2024

Srividhya Raju Sridharan, Sagar Malsane and Govinda Shashikant Bhutada

The purpose of the paper is to analyse the sequence of forces acting as barriers in the usage of drones in the construction industry using interpretive structural modelling (ISM)…

Abstract

Purpose

The purpose of the paper is to analyse the sequence of forces acting as barriers in the usage of drones in the construction industry using interpretive structural modelling (ISM). The usage of drones in the construction industry is brought out phase-wise with the help of literature and live cases. Barriers to the usage of drones in construction and steps to derive the interaction between them are described in detail.

Design/methodology/approach

The extraction of barriers to the usage of drones in construction is done through cases and supported by the literature. The identification of the interaction between the barriers is done through multi-criteria decision models, namely, ISM and Matriced Impacts Croises Multiplication Appliquee a un Classement (MICMAC) and the results are presented in the form of a hierarchical structure. The paper highlights the potential for the usage of drones in every phase of construction across three stages of construction and eight different applications.

Findings

The findings on the interaction between barriers show that technical and research and development-related barriers have a higher driving power, ultimately influencing negativity among stakeholders in drone usage for construction. By analysing interrelationships between barriers, management can frame suitable strategies to adopt drone usage in projects. Awareness about the strength of certain barriers can help management take steps to mitigate the same.

Research limitations/implications

By analysing interrelationships between barriers, management can frame suitable strategies to adopt drone usage in projects. A major limitation is a restriction of the study area to the Indian subcontinent. However, the authors believe that the results can be applied across countries where drone technology is at the nascent stage.

Practical implications

Awareness about the strength of certain barriers can help stakeholders take steps to mitigate the same.

Social implications

The results of this research also give some inputs to the government’s drone policy for wider usage of drones in the construction industry.

Originality/value

To the best of the authors’ knowledge, most studies on drones in construction industry bring out a list various challenges to their adoption. In this study, the authors have gone further to perform a hierarchical sequencing of barriers to drone adoption based on challenges faced in an emerging economy like India.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 23 November 2023

Luciano de Brito Staffa Junior, Dayana Bastos Costa, João Lucas Torres Nogueira and Alisson Souza Silva

This work aims to develop a web platform for inspecting roof structures for technical assistance supported by drones and artificial intelligence. The tools used were HTML, CSS and…

125

Abstract

Purpose

This work aims to develop a web platform for inspecting roof structures for technical assistance supported by drones and artificial intelligence. The tools used were HTML, CSS and JavaScript languages; Firebase software for infrastructure; and Custom Vision for image processing.

Design/methodology/approach

This study adopted the design science research approach, and the main stages for the development of the web platform include (1) creation and validation of the roof inspection checklist, (2) validation of the use of Custom Vision as an image recognition tool, and (3) development of the web platform.

Findings

The results of automatic recognition showed a percentage of 77.08% accuracy in identifying pathologies in roof images obtained by drones for technical assistance.

Originality/value

This study contributed to developing a drone-integrated roof platform for visual data collection and artificial intelligence for automatic recognition of pathologies, enabling greater efficiency and agility in the collection, processing and analysis of results to guarantee the durability of the building.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 10 September 2024

John Aliu, Douglas Omoregie Aghimien, Ogungbayi Olumide David and Ayodeji Emmanuel Oke

The slow adoption of unmanned aerial vehicles (UAVs) in the construction industry, particularly in developing countries like Nigeria, underscores the need for a deeper…

Abstract

Purpose

The slow adoption of unmanned aerial vehicles (UAVs) in the construction industry, particularly in developing countries like Nigeria, underscores the need for a deeper understanding of the critical factors influencing their adoption. This study aims to identify these factors using the Technology-Organization-Environment (TOE) framework and address uncertainties in their prioritization through Fuzzy Synthetic Evaluation (FSE). The utility of this approach lies in its ability to provide construction organizations with actionable insights to enhance operational efficiency and competitiveness through effective UAV adoption.

Design/methodology/approach

A post-positivist philosophical stance was adopted, wherein quantitative data were gathered from construction professionals in Nigeria via a questionnaire survey. The collected data were analyzed using the Cronbach alpha test as a measure of internal consistency and the FSE test to synthesize critical drivers for the adoption of UAVs.

Findings

The study found that drivers related to technology and organization are the most critical drivers. This implies that variables related to technology and organization warrant a higher level of focus if UAVs are to continue gaining popularity within the construction industry. Additionally, this study identified that logistic management, construction monitoring and site surveying represent the most critical areas of UAV application within the construction industry.

Practical implications

The emphasis on technology and organizational drivers as critical factors suggests that construction companies should prioritize investments in technology infrastructure and cultivate an organizational culture that embraces innovation. This may involve providing training to construction professionals to enhance their technological skills and fostering a leadership culture that champions technology adoption.

Originality/value

This study introduces novelty by applying the TOE framework, which has received limited attention in UAV adoption studies within construction. Additionally, the use of FSE addresses uncertainties in prioritizing critical drivers, particularly relevant in developing countries facing unique technological challenges. By assigning priority to these factors, this research lays the groundwork for a more informed and strategic approach to UAV adoption.

Details

International Journal of Intelligent Unmanned Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 4 April 2023

Giustina Secundo, Gioconda Mele, Giuseppina Passiante and Angela Ligorio

In the current economic scenario characterized by turbulence, innovation is a requisite for company's growth. The innovation activities are implemented through the realization of…

Abstract

Purpose

In the current economic scenario characterized by turbulence, innovation is a requisite for company's growth. The innovation activities are implemented through the realization of innovative project. This paper aims to prospect the promising opportunities coming from the application of Machine Learning (ML) algorithms to project risk management for organizational innovation, where a large amount of data supports the decision-making process within the companies and the organizations.

Design/methodology/approach

Moving from a structured literature review (SLR), a final sample of 42 papers has been analyzed through a descriptive, content and bibliographic analysis. Moreover, metrics for measuring the impact of the citation index approach and the CPY (Citations per year) have been defined. The descriptive and cluster analysis has been realized with VOSviewer, a tool for constructing and visualizing bibliometric networks and clusters.

Findings

Prospective future developments and forthcoming challenges of ML applications for managing risks in projects have been identified in the following research context: software development projects; construction industry projects; climate and environmental issues and Health and Safety projects. Insights about the impact of ML for improving organizational innovation through the project risks management are defined.

Research limitations/implications

The study have some limitations regarding the choice of keywords and as well the database chosen for selecting the final sample. Another limitation regards the number of the analyzed papers.

Originality/value

The analysis demonstrated how much the use of ML techniques for project risk management is still new and has many unexplored areas, given the increasing trend in annual scientific publications. This evidence represents an opportunities for supporting the organizational innovation in companies engaged into complex projects whose risk management become strategic.

Details

European Journal of Innovation Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1460-1060

Keywords

1 – 10 of 59