Search results

1 – 10 of 191
Article
Publication date: 5 January 2015

Yawei Wang, Hao Gao, Zhuyong Li, Yang Ping, Zhijian Jin and Zhiyong Hong

– The purpose of this paper is to analyse and improve the temperature uniformity of aluminium billets heated by superconducting DC induction heaters.

Abstract

Purpose

The purpose of this paper is to analyse and improve the temperature uniformity of aluminium billets heated by superconducting DC induction heaters.

Design/methodology/approach

A 3D electromagnetic model coupled with a heat transfer model is developed to calculate the heating process of the billets which are rotated in uniform transverse DC magnetic field. A laboratory-scale DC induction heater prototype has been built to validate the model. The results from simulation and measurement have a good agreement. The model is used to investigate the factors affecting the temperature uniformity of aluminium billets.

Findings

The results from simulation show that lower rotation speeds always mean better temperature uniformity along the radial direction, due to the increase in power penetration. However, the situation is very different for the temperature distribution along the axial direction. When the rotation speed is low, the temperature at the ends is lower than other parts. The situation reverses as the rotation speeds increase. This phenomenon is referred to as the “ending effect” in this paper.

Research limitations/implications

Because of the ending effect, a lower rotation speed does not always result in better overall temperature uniformity, especially for billets of smaller sizes.

Practical implications

There is an optimal rotation speed that yields the best overall temperature uniformity. Lower rotation speeds are not always preferred. The results and numerical model developed are very useful in the design of a superconducting DC induction heater.

Originality/value

The temperature uniformity of aluminium billets heated by DC induction heaters is investigated and optimized.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 13 September 2011

Pavel Karban, František Mach, Ivo Dolezel and Jerzy Barglik

The purpose of this paper is to present a methodology of high‐precision finite element modeling of induction heating of rotating nonferromagnetic cylindrical billets in static…

Abstract

Purpose

The purpose of this paper is to present a methodology of high‐precision finite element modeling of induction heating of rotating nonferromagnetic cylindrical billets in static magnetic field produced by appropriately arranged permanent magnets.

Design/methodology/approach

The mathematical model consisting of two partial differential equations describing the distribution of the magnetic and temperature fields are solved by a fully adaptive higher‐order finite element method in the monolithic formulation and selected results are validated experimentally.

Findings

The method of solution realized by own code is very fast, robust and exhibits much more powerful features when compared with classical low‐order numerical methods implemented in existing commercial codes.

Research limitations/implications

For sufficiently long arrangements the method provides good results even for 2D model. The principal limitation consists in problems with determining correct boundary conditions for the temperature field (generalized coefficient of convective heat transfer as a function of the temperature and revolutions).

Practical implications

The methodology can successfully be used for design of devices for induction heating of cylindrical nonmagnetic bodies by rotation and determination of their operation parameters.

Originality/value

The paper is a presentation of the fully adaptive higher‐order finite element and its utilization for a monolithic numerical solution of a relatively complicated coupled problem.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 July 2017

Ping Yang, Yawei Wang, T. Chang, H. Ma, Zhuyong Li, Zhijian Jin and Zhiyong Hong

The purpose of this paper is to propose a hybrid driving system that couples a motor and flywheel energy storage (FES) for a megawatt-scale superconducting direct current (DC…

Abstract

Purpose

The purpose of this paper is to propose a hybrid driving system that couples a motor and flywheel energy storage (FES) for a megawatt-scale superconducting direct current (DC) induction heater. Previous studies have proven that a superconducting DC induction heater has great advantages in relation to its energy efficiency and heating quality. In this heater, a motor rotates an aluminium billet in a DC magnetic field and the induced eddy current causes it to be heated. When the aluminium billet begins to rotate, a high peak load torque appears at a low rotation speed. Therefore, driving the billet economically has been a great challenge when designing the driving system, which is the focus of this paper.

Design/methodology/approach

A hybrid driving system based on FES is designed to provide extra torque when the peak load torque occurs at a low rotation speed, which allows the successful start-up of the aluminium billet and the operation of the motor at its rated capacity. The mechanical structure of this hybrid driving system is introduced. A simulation model was constructed using Matlab/Simulink and the dynamic start-up process is analysed. The influence of the flywheel’s inertia and required minimum engagement speed are investigated.

Findings

The results of this paper show that the hybrid driving system that couples FES and a motor can successfully be used to start the aluminium billet rotating. The flywheel’s inertia and engagement speed are the most important parameters. The inertia of the flywheel decreases with an increase in its engagement speed.

Practical implications

The cost of the driving system is significantly reduced, which is very important in relation to the commercial potential of this apparatus.

Originality/value

A novel start-up strategy for driving the aluminium billet of a superconducting DC induction heater at low speed is proposed based on FES.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 June 2020

Mohammed Messadi, Larbi Hadjout, Youcef Ouazir, Hakim Bensaidane, Noureddine Takorabet, Thierry Lubin and Smail Mezani

This paper aims to propose a new 3D electromagnetic model to compute translational motion eddy current in the conducting plate of a novel linear permanent magnet (PM) induction

Abstract

Purpose

This paper aims to propose a new 3D electromagnetic model to compute translational motion eddy current in the conducting plate of a novel linear permanent magnet (PM) induction heater. The movement of the plate in a DC magnetic field created by a PM inductor generates induced currents that are at the origin of a heating power by Joule effect. These topologies have strong magnetic end effects. The analytical model developed in this work takes into account the finite length extremity effects of the conducting plate and the reaction field because of induced currents.

Design/methodology/approach

The developed model is based on the combination of the sub-domain’s method and the image’s theory. First, the magnetic field expressions because of the PMs are obtained by solving the three-dimensional Maxwell equations by the method of separation of variables, using a magnetic scalar potential formulation and a magnetic field strength formulation. Then, the motional eddy currents are computed using the Ampere law, and the finite length extremity effects of the conducting plate are taken into account using the image’s method. To analyze the accuracy of the proposed model, the obtained results are compared to those obtained from 3D finite element model (FEM) and from experimental tests performed on a prototype.

Findings

The results show that the developed analytical model is very accurate, even for geometries where the edge effects are very strong. It allows directly taking into account the finite length extremity effects (the transverse edge effects) of the conducting plate and the reaction field because of induced currents without the need of any correction factor. The proposed model also presents an important reduction in computation time compared to 3D finite element simulation, allowing fast analysis of linear PM induction heater.

Practical implications

The proposed electromagnetic analytical model can be used as a quick and accurate design tool for translational motion PM induction heater devices.

Originality/value

A new 3D analytical electromagnetic model, to find the induced power in the conducting plate of a novel translational motion induction heater has been developed. The studied heating device has a finite length and a finite width, which create edge effects that are not easily considered in calculation. The novelty of the presented method is the accurate 3D analytical model, which allows finding the real power heating and real distribution of the induced currents in the conducting plate without the need to use correction factor. The proposed model also takes into account the reaction field because of induced currents. In addition, the developed model improves an important reduction in the computation time compared with 3D FEM simulation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 September 2012

Pavel Karban, František Mach and Ivo Dolezel

The purpose of this paper is to present a model of induction heating of aluminium billets rotating in a static magnetic field generated by permanent magnets. The model is solved…

Abstract

Purpose

The purpose of this paper is to present a model of induction heating of aluminium billets rotating in a static magnetic field generated by permanent magnets. The model is solved by the authors' own software and the results are verified experimentally.

Design/methodology/approach

The mathematical model of the problem given by two partial differential equations describing the distribution of the magnetic and temperature fields in the system is solved by a fully adaptive higher‐order finite element method in the hard‐coupled formulation. All material nonlinearities are taken into account.

Findings

The method of solution realized by the code is reliable and works faster in comparison with the existing low‐order finite element codes.

Research limitations/implications

The method works for 2D arrangements with an extremely high accuracy. Its limitations consist mainly in problems of determining the coefficients of convection and radiation for temperature field in the system (respecting both temperature and revolutions).

Practical implications

The methodology can successfully be used for design of devices for induction heating of cylindrical nonmagnetic bodies by rotation and anticipation of their operation parameters.

Originality/value

The paper presents a fully adaptive higher‐order finite element and its utilization for a hard‐coupled numerical solution of the problem of induction heating.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 13 September 2011

F. Dughiero, M. Forzan, S. Lupi, F. Nicoletti and M. Zerbetto

Low electrical resistivity metal billets can be heated by the currents induced by the rotation of the billet itself inside a transverse DC magnetic field produced by a…

Abstract

Purpose

Low electrical resistivity metal billets can be heated by the currents induced by the rotation of the billet itself inside a transverse DC magnetic field produced by a superconductive coil. The main drawback of this approach is related to cost of installation that requires an adequate refrigerating system. The purpose of this paper is to propose a more convenient solution, which allows the same high efficiency to be achieved at lower cost. In this solution, the billet is kept still and a series of permanent magnets, positioned in the inner part of a ferromagnetic frame, is rotated.

Design/methodology/approach

Some results of the new induction system are shown. These results are obtained applying for the electromagnetic solution both an FE commercial code and an analytical method. The analytical code is developed because several parameters of the system need to be optimized.

Findings

The performance of the solution presented is comparable with those of the system with superconductive coils. The results of the two methods applied are in good agreement; thus the analytical code is validated.

Originality/value

A new solution for the induction heating of aluminum billets is presented. The analytical code developed requires a very short computational time, also because it gives directly the steady‐state condition of the system and, for this reason, it can be conveniently applied to an automatic design process.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 2000

A. Savini

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community…

1133

Abstract

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community. Observes that computer package implementation theory contributes to clarification. Discusses the areas covered by some of the papers ‐ such as artificial intelligence using fuzzy logic. Includes applications such as permanent magnets and looks at eddy current problems. States the finite element method is currently the most popular method used for field computation. Closes by pointing out the amalgam of topics.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 29 November 2019

Sean Michael Muyskens, Tareq Ibrahim Eddir and Robert Charles Goldstein

This paper aims to demonstrate the benefits of using different impeder materials for induction tube welding systems.

Abstract

Purpose

This paper aims to demonstrate the benefits of using different impeder materials for induction tube welding systems.

Design/methodology/approach

To show the difference in using various impeder materials, a new approach was taken to model tube welding systems in two and three dimensions. Three-dimensional (3-D) electromagnetic models were used to determine the current distribution along the weld vee as well as the permeability of the tube along the length of the welding system. Two-dimensional (2-D) coupled electromagnetic plus thermal models with rotational movement were used to determine the temperature distribution in the heat-affected zone.

Findings

Simulation results suggest upwards of 25 per cent system power savings when using a soft magnetic composite (SMC) impeder rather than the traditional ferrites.

Research limitations/implications

There is currently a lack of experimental data to validate the models, but future work will include comparison of models to real-world trials.

Practical implications

When dealing with tube welding systems, there are possibilities to improve process efficiency or increase production quality and output by improving the impeder material.

Originality/value

While simulations of tube welding systems have been done previously, studies on improving impeder materials are rarely carried out. This paper brings to light possible improvements to be made to induction tube welding systems.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 March 2008

R. Bojoi, G. Griva, F. Profumo, M. Cesano and L. Natale

This paper aims to present the prototype of a 140 kVA shunt active power filter (APF) for current harmonics and fundamental reactive power compensation of a 200 kW induction

Abstract

Purpose

This paper aims to present the prototype of a 140 kVA shunt active power filter (APF) for current harmonics and fundamental reactive power compensation of a 200 kW induction heating system.

Design/methodology/approach

Design issues of the power components, of the switching ripple filter and of the digital control are addressed and discussed. The APF control algorithm has been implemented on the 16‐bit, fixed‐point, TMS320LF2407 A DSP controller. The current control is based on proportional‐sinusoidal signal integrators with good performance in current harmonic elimination and power factor compensation.

Findings

The experimental tests, performed in real industrial environment for a 200 kW induction heating plant, show that the performance goals are fulfilled.

Practical implications

The sinusoidal signal integrators (for consistency with the other plural forms of acronyms) of the current controller are implemented in the rotating reference frame aligned with the voltage vector at the point of common connection. This allows the compensation of two harmonics with a single SSI, thus halving the computational effort of the DSP.

Originality/value

In industrial induction heating, the need for harmonic and reactive power compensation lasts a few seconds per minute, making passive solutions not suitable. The presented APF is a valid solution for this application, where only a few tailored implementations are available on the market.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 27 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 13 September 2011

Massimo Fabbri, Antonio Morandi and Pier Luigi Ribani

The purpose of this paper is to analyse the heating process of an aluminum billet rotating in a static magnetic field produced by optimized supercoducting coils.

Abstract

Purpose

The purpose of this paper is to analyse the heating process of an aluminum billet rotating in a static magnetic field produced by optimized supercoducting coils.

Design/methodology/approach

In order to meet the technical specifications of industrial heating, many processes with low speed in the given high magnetic field have been simulated. The mechanical stresses in the billet are examined by taking into account the temperature dependence of the mechanical properties.

Findings

The main heating parameters, i.e. heating time, average temperature and temperature homogeneity, are evaluated for different values of angular velocity. The simulation results show that an optimal angular speed can be chosen with respect to the heating time.

Research limitations/implications

The mechanical stress in the billet due to weight, centrifugal effects, applied torque and resonance is examined by taking into account the weakening of the material properties with the increase of temperature. The practical limits of the heating process are evaluated; while resonance does not seem to be a concern, the safety against yielding, in order to avoid plastic deformation of the billet during the heating, seems to be a constraint.

Practical implications

DC induction heating of aluminum billet using superconducting magnets can be done fulfilling the specifics of the industrial processes.

Originality/value

The operational and mechanical constraints on a high‐efficiency DC induction heater for aluminum billets using superconducting coils are investigated.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 191